[1]
R.R. Boyer, An overview on the use of titanium in the aerospace industry, Mater. Sci. Eng. A 213 (1996) 103-114.
Google Scholar
[2]
I. Weiss, S.L. Semiatin, Thermomechanical processing of alpha titanium alloys - an overview, Mater. Sci. Eng. A 263 (1999) 243-256.
DOI: 10.1016/s0921-5093(98)01155-1
Google Scholar
[3]
L. Li, J. Luo, J.J. Yan, M.Q. Li, Dynamic globularization and restoration mechanism of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy during isothermal compression, J. Alloy. Compd. 622 (2015) 174-183.
DOI: 10.1016/j.jallcom.2014.10.043
Google Scholar
[4]
M. Döner, H. Conrad, Deformation mechanisms in commercial Ti-5Al-2.5Sn (0.5 At. pct Oeq) alloy at intermediate and high temperatures (0.3-0.6Tm), Metall. Trans. A 6 (1975) 853-861.
DOI: 10.1007/bf02672308
Google Scholar
[5]
O. Umezawa, K. Nagai, K. Ishikawa, Transmission electron microscopy study of high cycle fatigue deformation in Ti-5Al-2.5Sn extra-low interstitial alloy at cryogenic temperatures, Mater. Sci. Eng. A 129 (1990) 223-227.
DOI: 10.1016/0921-5093(90)90269-9
Google Scholar
[6]
Q.Y. Sun, H.C. Gu, Tensile and low-cycle fatigue behavior of commercially pure titanium and Ti-5AI-2.5Sn alloy at 293 and 77 K, Mater. Sci. Eng. A 316 (2001) 80-86.
DOI: 10.1016/s0921-5093(01)01249-7
Google Scholar
[7]
M.J. Tan, G.W. Chen, S. Thiruvarudchelvan, High temperature deformation in Ti-5Al-2.5Sn alloy, J. Mater. Process. Technol. 192 (2007) 434-438.
DOI: 10.1016/j.jmatprotec.2007.04.027
Google Scholar
[8]
H. Li, C.J. Boehlert, T.R. Bieler, M.A. Crimp, Analysis of slip activity and heterogeneous deformation in tension and tension-creep of Ti-5Al-2.5Sn (wt %) using in-situ SEM experiments, Philos. Mag. 92 (2012) 2923-2946.
DOI: 10.1080/14786435.2012.682174
Google Scholar
[9]
H. Li, D.E. Mason, Y. Yang, T.R. Bieler, M.A. Crimp, C.J. Boehlert, Comparison of the deformation behaviour of commercially pure titanium and Ti-5Al-2.5Sn(wt.%) at 296 and 728K, Philos. Mag. 93 (2013) 2875-2895.
DOI: 10.1080/14786435.2013.791752
Google Scholar
[10]
D.R. Chichili, K.T. Ramesh, K.J. Hemker, The high-strain-rate response of alpha-titanium: Experiments, deformation mechanisms and modeling, Acta Mater. 46 (1998) 1025-1043.
DOI: 10.1016/s1359-6454(97)00287-5
Google Scholar
[11]
S. Nemat-Nasser, W.G. Guo, J.Y. Cheng, Mechanical properties and deformation mechanisms of a commercially pure titanium, Acta Mater. 47 (1999) 3705-3720.
DOI: 10.1016/s1359-6454(99)00203-7
Google Scholar
[12]
W. Huang, X. Zan, X. Nie, M. Gong, Y. Wang, Y.M. Xia, Experimental study on the dynamic tensile behavior of a poly-crystal pure titanium at elevated temperatures, Mater. Sci. Eng. A 443 (2007) 33-41.
DOI: 10.1016/j.msea.2006.06.041
Google Scholar
[13]
Z.P. Zeng, Y.S. Zhang, S. Jonsson, Deformation behaviour of commercially pure titanium during simple hot compression, Mater. Des. 30 (2009) 3105-3111.
DOI: 10.1016/j.matdes.2008.12.002
Google Scholar
[14]
L.C. Tsao, H.Y. Wu, J.C. Leong, C.J. Fang, Flow stress behavior of commercial pure titanium sheet during warm tensile deformation, Mater. Des. 34 (2012) 179-184.
DOI: 10.1016/j.matdes.2011.07.060
Google Scholar
[15]
D. Rodriguez-Galan, I. Sabirov, J. Segurado, Temperature and stain rate effect on the deformation of nanostructured pure titanium, Int. J. Plast. 70 (2015) 191-205.
DOI: 10.1016/j.ijplas.2015.04.002
Google Scholar
[16]
J.Z. Song, Y.M. Xia, 3-D dynamic elastic-plastic FEA for rotating disk indirect bar-bar tensile impact apparatus: numerical analysis for the generation of mechanically-filtered incident stress pulses, Int. J. Impact Eng. 32 (2006) 1313-1338.
DOI: 10.1016/j.ijimpeng.2004.11.007
Google Scholar
[17]
Y.M. Xia, Y. Wang, Dynamic testing of materials with the rotating disk indirect bar-bar tensile impact apparatus, J. Test. Eval. 35 (2007) 31-35.
DOI: 10.1520/jte12436j
Google Scholar
[18]
C.Y. Wang, Y.M. Xia, Validity of one-dimensional experimental principle for flat specimen in Bar-Bar Tensile Impact Apparatus, Int. J. Solids Struct. 37 (2000) 3305-3322.
DOI: 10.1016/s0020-7683(99)00035-9
Google Scholar
[19]
J. Zhang, Y. Wang, Tension behavior of Ti-6.6Al-3.3Mo-1.8Zr-0.29Si alloy over a wide range of strain rates, Mater. Lett. 124 (2014) 113-116.
DOI: 10.1016/j.matlet.2014.03.042
Google Scholar
[20]
A.S. Khan, S. Huang, Experimental and theoretical study of mechanical behavior of 1100 Aluminum in the strain rate range 10-5-104s-1, 8 (1992) 397-424.
DOI: 10.1016/0749-6419(92)90057-j
Google Scholar
[21]
A.S. Khan, R.Q. Liang, Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling, Int. J. Plast. 15 (1999) 1089-1109.
DOI: 10.1016/s0749-6419(99)00030-3
Google Scholar
[22]
A.S. Khan, Y.S. Suh, R. Kazmi, Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys, Int. J. Plast. 20 (2004) 2233-2248.
DOI: 10.1016/j.ijplas.2003.06.005
Google Scholar