Tensile Behavior of Ti-5Al-2.5Sn Alloy at Low Temperatures and High Strain Rates

Article Preview

Abstract:

The mechanical responses of Ti-5Al-2.5Sn alloy at low temperatures were investigated under quasi-static and dynamic tensile loads using MTS system and SHTB system, respectively. Tensile stress-strain curves were obtained over the temperature range of 153 to 298K and the rate range of 0.001 to 1050 s-1. Experimental results indicate that the tensile behavior of Ti-5Al-2.5Sn alloy is dependent on strain rate and temperature. Yield stress and flow stress increase with increasing strain rate and decrease with increasing temperature. Results also indicate that strain hardening rate of Ti-5Al-2.5Sn alloy is lower at high strain rate, while strain hardening rate varies little with testing temperature. The Khan-Huang-Liang constitutive model was chosen to characterize the tensile responses of Ti-5Al-2.5Sn alloy at low temperatures and different strain rates. The model results coincide well with the experimental results within the tested temperature and rate ranges.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-141

Citation:

Online since:

February 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.R. Boyer, An overview on the use of titanium in the aerospace industry, Mater. Sci. Eng. A 213 (1996) 103-114.

Google Scholar

[2] I. Weiss, S.L. Semiatin, Thermomechanical processing of alpha titanium alloys - an overview, Mater. Sci. Eng. A 263 (1999) 243-256.

DOI: 10.1016/s0921-5093(98)01155-1

Google Scholar

[3] L. Li, J. Luo, J.J. Yan, M.Q. Li, Dynamic globularization and restoration mechanism of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy during isothermal compression, J. Alloy. Compd. 622 (2015) 174-183.

DOI: 10.1016/j.jallcom.2014.10.043

Google Scholar

[4] M. Döner, H. Conrad, Deformation mechanisms in commercial Ti-5Al-2.5Sn (0.5 At. pct Oeq) alloy at intermediate and high temperatures (0.3-0.6Tm), Metall. Trans. A 6 (1975) 853-861.

DOI: 10.1007/bf02672308

Google Scholar

[5] O. Umezawa, K. Nagai, K. Ishikawa, Transmission electron microscopy study of high cycle fatigue deformation in Ti-5Al-2.5Sn extra-low interstitial alloy at cryogenic temperatures, Mater. Sci. Eng. A 129 (1990) 223-227.

DOI: 10.1016/0921-5093(90)90269-9

Google Scholar

[6] Q.Y. Sun, H.C. Gu, Tensile and low-cycle fatigue behavior of commercially pure titanium and Ti-5AI-2.5Sn alloy at 293 and 77 K, Mater. Sci. Eng. A 316 (2001) 80-86.

DOI: 10.1016/s0921-5093(01)01249-7

Google Scholar

[7] M.J. Tan, G.W. Chen, S. Thiruvarudchelvan, High temperature deformation in Ti-5Al-2.5Sn alloy, J. Mater. Process. Technol. 192 (2007) 434-438.

DOI: 10.1016/j.jmatprotec.2007.04.027

Google Scholar

[8] H. Li, C.J. Boehlert, T.R. Bieler, M.A. Crimp, Analysis of slip activity and heterogeneous deformation in tension and tension-creep of Ti-5Al-2.5Sn (wt %) using in-situ SEM experiments, Philos. Mag. 92 (2012) 2923-2946.

DOI: 10.1080/14786435.2012.682174

Google Scholar

[9] H. Li, D.E. Mason, Y. Yang, T.R. Bieler, M.A. Crimp, C.J. Boehlert, Comparison of the deformation behaviour of commercially pure titanium and Ti-5Al-2.5Sn(wt.%) at 296 and 728K, Philos. Mag. 93 (2013) 2875-2895.

DOI: 10.1080/14786435.2013.791752

Google Scholar

[10] D.R. Chichili, K.T. Ramesh, K.J. Hemker, The high-strain-rate response of alpha-titanium: Experiments, deformation mechanisms and modeling, Acta Mater. 46 (1998) 1025-1043.

DOI: 10.1016/s1359-6454(97)00287-5

Google Scholar

[11] S. Nemat-Nasser, W.G. Guo, J.Y. Cheng, Mechanical properties and deformation mechanisms of a commercially pure titanium, Acta Mater. 47 (1999) 3705-3720.

DOI: 10.1016/s1359-6454(99)00203-7

Google Scholar

[12] W. Huang, X. Zan, X. Nie, M. Gong, Y. Wang, Y.M. Xia, Experimental study on the dynamic tensile behavior of a poly-crystal pure titanium at elevated temperatures, Mater. Sci. Eng. A 443 (2007) 33-41.

DOI: 10.1016/j.msea.2006.06.041

Google Scholar

[13] Z.P. Zeng, Y.S. Zhang, S. Jonsson, Deformation behaviour of commercially pure titanium during simple hot compression, Mater. Des. 30 (2009) 3105-3111.

DOI: 10.1016/j.matdes.2008.12.002

Google Scholar

[14] L.C. Tsao, H.Y. Wu, J.C. Leong, C.J. Fang, Flow stress behavior of commercial pure titanium sheet during warm tensile deformation, Mater. Des. 34 (2012) 179-184.

DOI: 10.1016/j.matdes.2011.07.060

Google Scholar

[15] D. Rodriguez-Galan, I. Sabirov, J. Segurado, Temperature and stain rate effect on the deformation of nanostructured pure titanium, Int. J. Plast. 70 (2015) 191-205.

DOI: 10.1016/j.ijplas.2015.04.002

Google Scholar

[16] J.Z. Song, Y.M. Xia, 3-D dynamic elastic-plastic FEA for rotating disk indirect bar-bar tensile impact apparatus: numerical analysis for the generation of mechanically-filtered incident stress pulses, Int. J. Impact Eng. 32 (2006) 1313-1338.

DOI: 10.1016/j.ijimpeng.2004.11.007

Google Scholar

[17] Y.M. Xia, Y. Wang, Dynamic testing of materials with the rotating disk indirect bar-bar tensile impact apparatus, J. Test. Eval. 35 (2007) 31-35.

DOI: 10.1520/jte12436j

Google Scholar

[18] C.Y. Wang, Y.M. Xia, Validity of one-dimensional experimental principle for flat specimen in Bar-Bar Tensile Impact Apparatus, Int. J. Solids Struct. 37 (2000) 3305-3322.

DOI: 10.1016/s0020-7683(99)00035-9

Google Scholar

[19] J. Zhang, Y. Wang, Tension behavior of Ti-6.6Al-3.3Mo-1.8Zr-0.29Si alloy over a wide range of strain rates, Mater. Lett. 124 (2014) 113-116.

DOI: 10.1016/j.matlet.2014.03.042

Google Scholar

[20] A.S. Khan, S. Huang, Experimental and theoretical study of mechanical behavior of 1100 Aluminum in the strain rate range 10-5-104s-1, 8 (1992) 397-424.

DOI: 10.1016/0749-6419(92)90057-j

Google Scholar

[21] A.S. Khan, R.Q. Liang, Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling, Int. J. Plast. 15 (1999) 1089-1109.

DOI: 10.1016/s0749-6419(99)00030-3

Google Scholar

[22] A.S. Khan, Y.S. Suh, R. Kazmi, Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys, Int. J. Plast. 20 (2004) 2233-2248.

DOI: 10.1016/j.ijplas.2003.06.005

Google Scholar