Electro-Magnetic Forming of Fiber Metal Laminates

Article Preview

Abstract:

The paper presents the results of forming rifts in five-layer metal polymer laminates by electro-magnetic forming. During the experimental studies the discharge energy of the electro-magnetic machine was varied in such a way as to achieve different depths of the rift. Samples obtained by electro-magnetic forming were compared with control samples obtained by forming using a rubber pad under static loading. The strain state of the samples was analyzed using an digital image correlation system Vic-3D.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-112

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.N. Fridlyander, Aluminum alloys in aircraft in the periods 1970-2000 and 2001-2015, Tekhnol. Legk. Splav. 4 (2002) 21-27 (in Russ.).

Google Scholar

[2] E.N. Kablov, Materials and Chemical Technologies for Aviation Equipment, Vestn. Ross. Akad. Nauk. 82(6) (2012) 520-530 (in Russ.).

Google Scholar

[3] J.T. Staley and D.J. Lege, Advances in aluminum alloy products for structural applications in transportation, J. de Physique IV. 3(7) (1993) 179-190.

DOI: 10.1051/jp4:1993728

Google Scholar

[4] R. Rioja and J. Liu, The Evolution Of Al-Li Base Products For Aerospace And Space Applications, Metal. Mater. Trans. A. 43(9) (2012) 3325-3337.

DOI: 10.1007/s11661-012-1155-z

Google Scholar

[5] T. Sinmazcelik, E. Avcu, M. Bora and O. Coban, A review: Fibre metal laminates, background, bonding types and applied test methods, Mater. Design. 32 (2011) 3671-3685.

DOI: 10.1016/j.matdes.2011.03.011

Google Scholar

[6] A. Vlot, Glare: History of the Development of a New Aircraft Material, Dordrecht, Kluwer, (2002).

Google Scholar

[7] A. Vlot and J. Gunnink, Fibre Metal Laminates. An Introduction, Dordrecht, Kluwer, (2001).

Google Scholar

[8] I.N. Fridlyander, O.G. Senatorova, N.F. Lukina, et al., Laminated aluminum polymer materials GLAREs, Klei. Germetiki. Tekhnologii. 5 (2007) 15-17 (in Russ.).

Google Scholar

[9] V.V. Antipov, O.G. Senatorova, V.V. Sidel'nikov, et al., Structural laminates GLARE, Klei. Germetiki. Tekhnologii. 6 (2012) 13-17 (in Russ.).

Google Scholar

[10] R. Alderliesten, On the Development of Hybrid Material Concepts for Aircraft Structures, Recent Pat. Eng. 3 (2009) 25-38.

Google Scholar

[11] O.G. Senatorova, V.V. Antipov, N.F. Lukina, et al., High-strength crack-resistant light glass-fiber reinforced aluminum laminates GLAREs - a promising material for aircraft structures, Tekhnol. Legk. Splav. 2 (2009) 28-31 (in Russ.).

Google Scholar

[12] V.V. Antipov, Technological aluminum-lithium alloy 1441 and layered hybrid composites based on it, Metallurg. 5 (2012) 36-39 (in Russ.).

Google Scholar

[13] V.V. Antipov, N.A. Lavro, V.V. Sukhoivanenko and O.G. Senatorova, Experience in the use of Al-Li alloy 1441 and laminates based on it in seaplanes, Tsvetn. Met. 9 (2013) 46-50 (in Russ.).

Google Scholar

[14] E.N. Kablov, V.V. Antipov and O.G. Senatorova, Glass-fiber reinforced aluminum laminates and cooperation with Airbus and TU Delft, Tsvetn. Met. 9 (2013) 50-53 (in Russ.).

Google Scholar

[15] J. Sinke, Manufacturing Principles For Fiber Metal Laminates, Appl. Comp. Mater. 10(4-5) (2003) 293-305.

Google Scholar

[16] A.V. Postnov, V.I. Postnov and I.A. Kazakov, Features of technologies for forming profile structures from metal-polymer composite materials, Izv. Samara Nauch. Tsentr. Ross. Akad. Nauk. 3(2) (2009) 499-508 (in Russ.).

Google Scholar

[17] V. Psyk, D. Risch, B.L. Kinsey, A.E. Tekkaya, M. Kleiner, Electromagnetic forming - A review, Journal of Materials Processing Technology. 211(5) (2011) 787-829.

DOI: 10.1016/j.jmatprotec.2010.12.012

Google Scholar

[18] V. Gluschenkov, Pulse-magnetic processing of materials. Development. Problems and solution techniques, Key Engineering Materials. 684 (2016) 511-514.

DOI: 10.4028/www.scientific.net/kem.684.511

Google Scholar

[19] H. Yu, Z. Fan, C. Li, Magnetic pulse cladding of aluminum alloy on mild steel tube, Journal of Materials Processing Technology. 214(2) (2014) 141-150.

DOI: 10.1016/j.jmatprotec.2013.08.013

Google Scholar

[20] V.Y. Astapov, E.V. Usachev, L.L. Khoroshko, M. Tajdari, A.M. Amouei, S.E. Hosseini Mehraban, Forming of axisymmetric tubes under the influence of impulse-magnetic field and computer simulation of the process, Journal of Materials Processing Technology. 177(1-3) (2006) 274-277.

DOI: 10.1016/j.jmatprotec.2006.04.103

Google Scholar

[21] F.-Q. Li, J.-H. Mo, J.-J. Li, L. Huang, H.-Y. Zhou, Formability of Ti-6Al-4V titanium alloy sheet in magnetic pulse bulging, Materials and Design. 52 (2013) 337-344.

DOI: 10.1016/j.matdes.2013.05.064

Google Scholar

[22] V. Glushchenkov, I. Belyaeva, Technological schemes of hybrid and combined technologies using static and dynamic loads, Key Engineering Materials. 746 (2017) 246-254.

DOI: 10.4028/www.scientific.net/kem.746.246

Google Scholar