Development and Validation of Multiscale Thermo-Elasto-Viscoplastic Analysis Method for Plain-Woven Composites

Article Preview

Abstract:

In this study, the analysis method for thermomechanical properties of plain-woven composites is developed, and applied to thermoelastoviscoplastic analysis of plain-woven glass fiber-reinforced plastic (GFRP) composites. For this, a time-dependent constitutive equation depending on temperature for matrix materials is incorporated into the micro/meso/macro-scale thermo-elastic homogenization method for plain-woven composites developed by our research group. This method enables us to analyze thermoelastoviscoplastic properties in not only fiber bundles but also fibers and matrix materials in fiber bundles, as well as macroscopic thermal properties. This method is then applied to the thermal expansion analysis of a plain-woven GFRP composite subjected to a macroscopic temperature change from 25°C to 80°C before it is cooled to 25°C. Comparing the analysis results with experimental data, we validate the present method. It is also shown that the present method can evaluate themal residual stress and strain in the composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-88

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Suquet, Elements of homogenization for inelastic solid mechanics, In: E. Sanchez-Palencia, A. Zaoui, (Eds.), Homogenization Techniques for Composite Media, Lecture Notes in Physics, No. 272, Springer-Verlag, Berlin, (1980).

DOI: 10.1007/3-540-17616-0

Google Scholar

[2] Y. M. Shabana and N. Noda, Int. J. Solids and Struct., Numerical evaluation of the thermomechanical effective properties of a functionally graded material using the homogenization method, 45 (2008), 3494-3506.

DOI: 10.1016/j.ijsolstr.2008.02.012

Google Scholar

[3] K. Goto, N. Nogawa, M. Arai and T.Matsuda, Evaluation of thermo-elasto-viscoplastic properties of unidirectional cfrtp based on homogenization theory, Tran. JASCOME, 16 (2016), 25-161202 (in japanese).

DOI: 10.1299/jsmemm.2017.os1002

Google Scholar

[4] A. Dasgupta, R. K. Agrwal and S. M. Bhandarkar, Three-dimensional modeling of woven-fabric composites for effective thermo-mechanical and thermal properties, Compos. Sci. Technol., 56 (1996), 209-223.

DOI: 10.1016/0266-3538(95)00111-5

Google Scholar

[5] O. E. Seifert, S. C. Schumacher and C. Hansen, Viscoelastic properties of a glass fabric composite at elevated temperatures: experimental and numerical results, Compos. Pt. B Eng., 34 (2003), 571-586.

DOI: 10.1016/s1359-8368(03)00078-7

Google Scholar

[6] K. F. Rogers, D. M. Kingston-Lee, L. N. Phillips, B. Yates, M. Chandra and S. F. H. Parker, The thermal expansion of carbon-fibre reinforced plastics, J. Mat. Sci., 16 (1981), 2803-2818.

DOI: 10.1007/bf02402845

Google Scholar

[7] J. Korab, P. Stefanik, S. Kavecky, P. Sebo and G. Korb, Thermal conductivity of unidirectional copper matrix carbon fibre composites, Compos. Pt. A Appl. Sci. Manuf., 33 (2002), 577-581.

DOI: 10.1016/s1359-835x(02)00003-9

Google Scholar

[8] Y. Sato and T. Matsuda, Evaluation of micro/meso/macro thermal properties of plain-woven laminates, Key Eng. Mat., 725 (2017), 439-444.

DOI: 10.4028/www.scientific.net/kem.725.439

Google Scholar

[9] N. Ohno, X. Wu and T. Matsuda, Homogenized properties of elastic-viscoplastic composites with periodic internal structures, Int. J. Mech. Sci., 42 (2000), 1519-1536.

DOI: 10.1016/s0020-7403(99)00088-0

Google Scholar

[10] N. Ohno, T. Matsuda and X. Wu, A homogenization theory for elastic-viscoplastic composites with point symmetry of internal distributions, Int. J. Solids Struct., 38 (2001), 2867-2878.

DOI: 10.1016/s0020-7683(00)00188-8

Google Scholar

[11] G. Kubo, T. Matsuda and Y. Sato, A novel basic cell modeling method for elastic-viscoplastic homogenization analysis of plain-woven laminates with nesting, Int. J. Mech. Sci.,42 (2018), 1519-1536.

DOI: 10.1016/j.ijmecsci.2018.01.007

Google Scholar

[12] N. Ohno, D. Okumura and H. Noguchi, Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation, J. Mech. Phy. Solids, 50, (2002), 1125-1153.

DOI: 10.1016/s0022-5096(01)00106-5

Google Scholar

[13] L. Yang, Y. Yan, J. Ma and B.Liu, Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer–matrix composites, Comp. Mat. Sci., 68 (2013), 255-262.

DOI: 10.1016/j.commatsci.2012.09.027

Google Scholar

[14] T. Matsuda, Y. Nimiya, N. Ohno and M. Tokuda, Elastic-viscoplastic behavior of plain-woven GFRP laminates: Homogenization using reduced domain of analysis, Compos. Struct.,79 (2007), 493-500.

DOI: 10.1016/j.compstruct.2006.02.008

Google Scholar

[15] H. Wang, M. Cao, A. Siddique, B. Sun and B. Gu, Numerical analysis of thermal expansion behaviors and interfacialthermal stress of 3D braided composite materials, Comp. Mat. Sci., 138 (2017) 77–91.

DOI: 10.1016/j.commatsci.2017.06.023

Google Scholar