[1]
P. Suquet, Elements of homogenization for inelastic solid mechanics, In: E. Sanchez-Palencia, A. Zaoui, (Eds.), Homogenization Techniques for Composite Media, Lecture Notes in Physics, No. 272, Springer-Verlag, Berlin, (1980).
DOI: 10.1007/3-540-17616-0
Google Scholar
[2]
Y. M. Shabana and N. Noda, Int. J. Solids and Struct., Numerical evaluation of the thermomechanical effective properties of a functionally graded material using the homogenization method, 45 (2008), 3494-3506.
DOI: 10.1016/j.ijsolstr.2008.02.012
Google Scholar
[3]
K. Goto, N. Nogawa, M. Arai and T.Matsuda, Evaluation of thermo-elasto-viscoplastic properties of unidirectional cfrtp based on homogenization theory, Tran. JASCOME, 16 (2016), 25-161202 (in japanese).
DOI: 10.1299/jsmemm.2017.os1002
Google Scholar
[4]
A. Dasgupta, R. K. Agrwal and S. M. Bhandarkar, Three-dimensional modeling of woven-fabric composites for effective thermo-mechanical and thermal properties, Compos. Sci. Technol., 56 (1996), 209-223.
DOI: 10.1016/0266-3538(95)00111-5
Google Scholar
[5]
O. E. Seifert, S. C. Schumacher and C. Hansen, Viscoelastic properties of a glass fabric composite at elevated temperatures: experimental and numerical results, Compos. Pt. B Eng., 34 (2003), 571-586.
DOI: 10.1016/s1359-8368(03)00078-7
Google Scholar
[6]
K. F. Rogers, D. M. Kingston-Lee, L. N. Phillips, B. Yates, M. Chandra and S. F. H. Parker, The thermal expansion of carbon-fibre reinforced plastics, J. Mat. Sci., 16 (1981), 2803-2818.
DOI: 10.1007/bf02402845
Google Scholar
[7]
J. Korab, P. Stefanik, S. Kavecky, P. Sebo and G. Korb, Thermal conductivity of unidirectional copper matrix carbon fibre composites, Compos. Pt. A Appl. Sci. Manuf., 33 (2002), 577-581.
DOI: 10.1016/s1359-835x(02)00003-9
Google Scholar
[8]
Y. Sato and T. Matsuda, Evaluation of micro/meso/macro thermal properties of plain-woven laminates, Key Eng. Mat., 725 (2017), 439-444.
DOI: 10.4028/www.scientific.net/kem.725.439
Google Scholar
[9]
N. Ohno, X. Wu and T. Matsuda, Homogenized properties of elastic-viscoplastic composites with periodic internal structures, Int. J. Mech. Sci., 42 (2000), 1519-1536.
DOI: 10.1016/s0020-7403(99)00088-0
Google Scholar
[10]
N. Ohno, T. Matsuda and X. Wu, A homogenization theory for elastic-viscoplastic composites with point symmetry of internal distributions, Int. J. Solids Struct., 38 (2001), 2867-2878.
DOI: 10.1016/s0020-7683(00)00188-8
Google Scholar
[11]
G. Kubo, T. Matsuda and Y. Sato, A novel basic cell modeling method for elastic-viscoplastic homogenization analysis of plain-woven laminates with nesting, Int. J. Mech. Sci.,42 (2018), 1519-1536.
DOI: 10.1016/j.ijmecsci.2018.01.007
Google Scholar
[12]
N. Ohno, D. Okumura and H. Noguchi, Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation, J. Mech. Phy. Solids, 50, (2002), 1125-1153.
DOI: 10.1016/s0022-5096(01)00106-5
Google Scholar
[13]
L. Yang, Y. Yan, J. Ma and B.Liu, Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer–matrix composites, Comp. Mat. Sci., 68 (2013), 255-262.
DOI: 10.1016/j.commatsci.2012.09.027
Google Scholar
[14]
T. Matsuda, Y. Nimiya, N. Ohno and M. Tokuda, Elastic-viscoplastic behavior of plain-woven GFRP laminates: Homogenization using reduced domain of analysis, Compos. Struct.,79 (2007), 493-500.
DOI: 10.1016/j.compstruct.2006.02.008
Google Scholar
[15]
H. Wang, M. Cao, A. Siddique, B. Sun and B. Gu, Numerical analysis of thermal expansion behaviors and interfacialthermal stress of 3D braided composite materials, Comp. Mat. Sci., 138 (2017) 77–91.
DOI: 10.1016/j.commatsci.2017.06.023
Google Scholar