[1]
D. Anand and D. R. Kumar, Effect of Thickness and Grain Size on Flow Stress of Very Thin Brass Sheets, Procedia Materials Science. 6 (2014), 154-160.
DOI: 10.1016/j.mspro.2014.07.019
Google Scholar
[2]
S. W. Baek, S. I. Oh, and S. H. Rhim, Lubrication for Micro Forming of Ultra Thin Metal Foil, CIRP Annals - Manufacturing Technology. 551 (2006), 295-298.
DOI: 10.1016/s0007-8506(07)60420-x
Google Scholar
[3]
W. L. Chan and M. W. Fu, Experimental studies and numerical modeling of the specimen and grain size effects on the flow stress of sheet metal in microforming, Materials Science and Engineering: A. 25 (2011), 7674-7683.
DOI: 10.1016/j.msea.2011.06.076
Google Scholar
[4]
W. L. Chan, M. W. Fu, and B. Yang, Experimental studies of the size effect affected microscale plastic deformation in micro upsetting process, Materials Science and Engineering: A. 534 (2012), 374-383.
DOI: 10.1016/j.msea.2011.11.083
Google Scholar
[5]
J. H. Deng, M. W. Fu, and W. L. Chan, Size effect on material surface deformation behavior in micro-forming process, Materials Science and Engineering: A. 13–14 (2011), 4799-4806.
DOI: 10.1016/j.msea.2011.03.005
Google Scholar
[6]
E. Egerer and U. Engel, Process Characterization and Material Flow in Microforming at Elevated Temperatures, Journal of Manufacturing Processes. 1 (2004), 1-6.
DOI: 10.1016/s1526-6125(04)70054-7
Google Scholar
[7]
U. Engel, Tribology in microforming, Wear. 3 (2006), 265-273.
Google Scholar
[8]
U. Engel and R. Eckstein, Microforming—from basic research to its realization, Journal of Materials Processing Technology. 125–126, (2002), 35-44.
DOI: 10.1016/s0924-0136(02)00415-6
Google Scholar
[9]
M. W. Fu and W. L. Chan, Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation, Materials & Design. 32 (2011), 4738-4746.
DOI: 10.1016/j.matdes.2011.06.039
Google Scholar
[10]
M. W. Fu and W. L. Chan, A review on the state-of-the-art microforming technologies, International Journal of Advanced Manufacturing Technology, Article vol. 9-12, (2013), 2411-2437.
Google Scholar
[11]
M. W. Fu, J. L. Wang, and A. M. Korsunsky, A review of geometrical and microstructural size effects in micro-scale deformation processing of metallic alloy components, International Journal of Machine Tools and Manufacture. 109 (2016), 94-125.
DOI: 10.1016/j.ijmachtools.2016.07.006
Google Scholar
[12]
M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, and U. Engel, Microforming, CIRP Annals - Manufacturing Technology. 2 (2001), 445-462.
DOI: 10.1016/s0007-8506(07)62991-6
Google Scholar
[13]
S. Geißdörfer, U. Engel, and M. Geiger, FE-simulation of microforming processes applying a mesoscopic model, International Journal of Machine Tools and Manufacture. 46, 11, (2006), 1222-1226.
DOI: 10.1016/j.ijmachtools.2006.01.019
Google Scholar
[14]
E. Ghassemali, M.-J. Tan, C. B. Wah, A. E. W. Jarfors, and S. C. V. Lim, Grain size and workpiece dimension effects on material flow in an open-die micro-forging/extrusion process, Materials Science and Engineering: A. 582 (2013), 379-388.
DOI: 10.1016/j.msea.2013.06.023
Google Scholar
[15]
B. Guo, F. Gong, C. Wang, and D. Shan, Size effect on friction in scaled-down strip drawing, Journal of Materials Science, journal article. 45, 15 (2010), 4067-4072.
DOI: 10.1007/s10853-010-4492-6
Google Scholar
[16]
H. Ike, Surface deformation vs. bulk plastic deformation—a key for microscopic control of surfaces in metal forming, Journal of Materials Processing Technology. 138, 1, (2003), 250-255.
DOI: 10.1016/s0924-0136(03)00080-3
Google Scholar
[17]
Z. Jiang, J. Zhao, and H. Xie, Chapter 1 - Fundamentals of Microforming, in Microforming Technology: Academic Press. (2017), 3-27.
DOI: 10.1016/b978-0-12-811212-0.00001-7
Google Scholar
[18]
Z. Jiang, J. Zhao, and H. Xie, Chapter 2 - Size Effects in Microforming, in Microforming Technology: Academic Press. (2017), 29-50.
DOI: 10.1016/b978-0-12-811212-0.00002-9
Google Scholar
[19]
X. Lai, L. Peng, P. Hu, S. Lan, and J. Ni, Material behavior modelling in micro/meso-scale forming process with considering size/scale effects, Computational Materials Science. 43, 4, (2008), 1003-1009.
DOI: 10.1016/j.commatsci.2008.02.017
Google Scholar
[20]
J. G. Liu, M. W. Fu, and W. L. Chan, A constitutive model for modeling of the deformation behavior in microforming with a consideration of grain boundary strengthening, Computational Materials Science. 55, (2012), 85-94.
DOI: 10.1016/j.commatsci.2011.11.018
Google Scholar
[21]
H. N. Lu, D. B. Wei, Z. Y. Jiang, X. H. Liu, and K. Manabe, Modelling of size effects in microforming process with consideration of grained heterogeneity, Computational Materials Science. 77, (2013), 44-52.
DOI: 10.1016/j.commatsci.2013.03.033
Google Scholar
[22]
Fang, Z., Jiang, Z., Wang, X., Zhou, C., Wei, D. & Liu, X. Grain size effect of thickness/average grain size on mechanical behaviour, fracture mechanism and constitutive model for phosphor bronze foil. International Journal of Advanced Manufacturing Technology, 79, 9-12, (2005) 1905-1914.
DOI: 10.1007/s00170-015-6928-2
Google Scholar
[23]
Molotnikov, A., Lapovok, R, Davies, C.H.J, Cao, W & Estrin, Y. Size effect on the tensile strength of fine-grained copper., Scripta Materialia. 59, 11 (2008), 1182-1185.
DOI: 10.1016/j.scriptamat.2008.08.004
Google Scholar
[24]
Estrin, Y. A dislocation-based model for all hardening stages in large strain deformation., Acta Materialia. 46, 15 (1998), 5509-5522.
DOI: 10.1016/s1359-6454(98)00196-7
Google Scholar