[1]
Y. C. Fung, Foundation of solid mechanics, Prentice-Hall, (1965), p.451.
Google Scholar
[2]
R. W. Ogden, Non-linear elastic deformations, (1997).
Google Scholar
[3]
Dover Publications.
Google Scholar
[4]
G. A. Holzapfel, Nonlinear solid mechanics, (2000), John Wiley.
Google Scholar
[5]
J. Merodio and R. W. Ogden, Mechanical response of fiber-reinforced incompressible non- linearly elastic solids, International Journal of Nonlinear Mechanics, 40 (2005) 213–227.
DOI: 10.1016/j.ijnonlinmec.2004.05.003
Google Scholar
[6]
A. Dorfmann, B.A. Trimmer and W. A. Jr. Woods, A constitutive model for muscle properties in a soft bodied arthropod, Journal of the Royal Society, Interface, 4 (2007) 257-269.
DOI: 10.1098/rsif.2006.0163
Google Scholar
[7]
H. M. James and E. Guth, Theory of the elastic properties of rubber, The Journal of Chemical Physics, 11 (1943) 455–481.
Google Scholar
[8]
E. M. Arruda and M. C. Boyce, A three-dimensional constitutive model for large stretch behavior of rubber materials, Journal of the Mechanics and Physics of Solids, 41 (1993) 389-412.
DOI: 10.1016/0022-5096(93)90013-6
Google Scholar
[9]
P. D. Wu and E. van der Giessen, On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers, Journal of the Mechanics and Physics of Solids, 41 (1993) 427-456.
DOI: 10.1016/0022-5096(93)90043-f
Google Scholar
[10]
G. Marckmann, E. Verron, L. Gornet, G. Chagnon, P. Charrier and P. Fort, A theory of network alteration for the Mullins effect, Journal of the Mechanics and Physics of Solids, 50 (2002) 2011–(2028).
DOI: 10.1016/s0022-5096(01)00136-3
Google Scholar
[11]
Y. Tomita and S. Tanaka, Prediction of deformation behavior of glassy polymers based on molecular chain network model. International Journal of Solids and Structures, 32 (1995) 3423-3434.
DOI: 10.1016/0020-7683(94)00315-n
Google Scholar
[12]
Y. Tomita, T. Adachi and S. Tanaka, Modelling and application of constitutive equation for glassy polymer based on nonaffine network theory. Europian Journal of Mechanics A/Solids, 165 (1997) 745-755.
Google Scholar
[13]
Y. Tomita and W. Lu , Characterization of micro- to macroscopic response of polymers containing second-phase particles under macroscopically uniform deformation, International Journal of Solids and Structures, 39 (2002) 3409-3428.
DOI: 10.1016/s0020-7683(02)00163-4
Google Scholar
[14]
Y. Tomita and M. Uchida, Characterization of micro- to macroscopic deformation behavior of amorphous polymer with heterogeneous distribution of microstructures, International Journal of Mechanical Sciences, 45 (2003) 1703-1716.
DOI: 10.1016/j.ijmecsci.2003.09.023
Google Scholar
[15]
Y. Tomita, L. Wei, M. Naito and Y. Furutani, Numerical evaluation of micro- to macroscopic mechanical behavior of carbon-black-filled rubber, International Journal of Mechanical Sciences, 48 (2006) 108-116.
DOI: 10.1016/j.ijmecsci.2005.08.009
Google Scholar
[16]
Y. Tomita, K. Azuma and M. Naito, Computational evaluation of strain-rate dependent deformation behavior of rubber and carbon-black-filled rubber under monotonic and cyclic straining, International Journal of Mechanical Sciences, 50 (2008) 856-868.
DOI: 10.1016/j.ijmecsci.2007.09.010
Google Scholar
[17]
Y. Tomita, T. Honma and K. Yashiro, Effect of silica coupling agents on texture formation and strengthening for silica-filled rubber, Key Engineering Materials, 626 (2015) 40-45.
DOI: 10.4028/www.scientific.net/kem.626.40
Google Scholar
[18]
J. S. Bergstrom and M. C. Boyce, Constitutive modeling of the large strain time-dependent behavior of elastomers, Journal of the Mechanics and Physics of Solids, 46 (1998)931-954.
DOI: 10.1016/s0022-5096(97)00075-6
Google Scholar
[19]
M. Doi and S. F. Edwards, The theory of polymer dynamics (1986) 16-28. Oxford University Press.
Google Scholar
[20]
Y. Tomita, S. Nakata, T. Honma and K. Yashiro, Deformation behavior of silica-filled rubber with coupling agents under monotonic and cyclic straining, International Journal of Mechanical Sciences, 86 (2014)7-17.
DOI: 10.1016/j.ijmecsci.2013.09.030
Google Scholar
[21]
Y. Naito and M. Ito, Study on the Stress Softening Effect of Silica Filled Vulcanizates,The Society of Rubber Science and Technology, Japan, 82 (2009) 394-399.
DOI: 10.2324/gomu.82.394
Google Scholar
[22]
K. Yashiro, T. Itho and Y. Tomita, Molecular dynamics simulation of deformation behavior in amorphous polymer: nucleation of chain entanglements and network structure under uniaxial tension, International Journal of Mechanical Sciences, 45 (2003) 1863-1876.
DOI: 10.1016/j.ijmecsci.2003.11.001
Google Scholar