[1]
Ji H, Park I J, Lee S M, et al. The effect of pre-strain on hydrogen embrittlement in 310S stainless steel [J]. Journal of Alloys & Compounds, 2014, 598(3):205-212.
DOI: 10.1016/j.jallcom.2014.02.038
Google Scholar
[2]
Peng J, Li K S, Peng J, et al. The effect of pre-strain on tensile behaviour of 316L austenitic stainless steel [J]. Materials Science & Technology, 2018(3): 547-560.
DOI: 10.1080/02670836.2017.1421735
Google Scholar
[3]
Mehmanparast A, Davies C M, Dean D W, et al. Effects of plastic pre-straining level on the creep deformation, crack initiation and growth behaviour of 316H stainless steel [J]. International Journal of Pressure Vessels & Piping, 2016, 141:1-10.
DOI: 10.1016/j.ijpvp.2016.03.013
Google Scholar
[4]
Hong S M, Min D J, Chung Y K, et al. Effect of preexisting plastic deformation on the creep behavior of TP347 austenitic steel[J]. Materials Science & Engineering A, 2016, 654:390-399.
DOI: 10.1016/j.msea.2015.12.051
Google Scholar
[5]
Yang S, Ling X, Zheng Y. Creep behaviors evaluation of Incoloy800H by small punch creep test [J]. Materials Science & Engineering A, 2017, 685:1-6.
DOI: 10.1016/j.msea.2016.12.092
Google Scholar
[6]
Andrés D, Lacalle R, Álvarez J A. Creep property evaluation of light alloys by means of the Small Punch test: Creep master curves [J]. Materials & Design, 2016, 96:122-130.
DOI: 10.1016/j.matdes.2016.02.023
Google Scholar
[7]
Gülçimen B, Hähner P. Determination of creep properties of a P91 weldment by small punch testing and a new evaluation approach [J]. Materials Science & Engineering A Structural Materials Properties Microstructure & Processing, 2013, 588(12):125-131.
DOI: 10.1016/j.msea.2013.09.029
Google Scholar
[8]
Wen C, Xu T, Guan K. Correlation Factor Study of Small Punch Creep Test and Its Life Prediction [J]. Materials, 2016, 9(10):796.
DOI: 10.3390/ma9100796
Google Scholar
[9]
Chen J, Ma Y W, Yoon K B. Finite element study for determination of material's creep parameters from small punch test [J]. Journal of Mechanical Science & Technology, 2010, 24(6):1195-1201.
DOI: 10.1007/s12206-010-0327-2
Google Scholar
[10]
Kassner M E, Smith K. Low temperature creep plasticity [J]. Journal of Materials Research and Technology. 2014, 3:280-288.
Google Scholar
[11]
Alfredsson B, Arregui I L, Lai J. Low temperature creep in a high strength roller bearing steel [J]. Mechanics of Materials, 2016, 100:109-125.
DOI: 10.1016/j.mechmat.2016.06.010
Google Scholar
[12]
Peng J, Zhou C Y, Dai Q, et al. The temperature and stress dependent primary creep of CP-Ti at low and intermediate temperature [J]. Materials Science and Engineering A, 2014, 611(9):123-135.
DOI: 10.1016/j.msea.2014.05.094
Google Scholar
[13]
ASTM E8M-04, Standard Test Methods for Tension Testing of Metallic Materials [S].
Google Scholar
[14]
Kalyanasundaram V, Holdsworth S R. Prediction of Forward Creep Behaviour from Stress Relaxation Data for a 10 % Cr Steel at 600 °C [J]. Transactions of the Indian Institute of Metals, 2015, 69(2):1-6.
DOI: 10.1007/s12666-015-0776-5
Google Scholar
[15]
Yang B, Xuan F Z. Creep behavior of subzones in a CrMoV weldment characterized by the in-situ creep test with miniature specimens [J]. Materials Science & Engineering A, 2018, 723(18): 148-156.
DOI: 10.1016/j.msea.2018.03.051
Google Scholar