The Effect of Surface Self-Nanocrystallization on Low-Temperature Gas Carburization for AISI 316L Steel

Article Preview

Abstract:

In this work, the effect of surface self-nanocrystallization on low-temperature gas carburizing for AISI316L austenitic stainless steel has been studied. The surface ultrasonic rolling processing (SURP) was used to prepare nanostructured surface layers, and then the un-SURP and SURP samples were treated by LTGC at 470 °C for 10 h, 20 h and 30 h. In order to analyze the effect of surface self-nanocrystallization on low-temperature gas carburizing, optical microscopy (OM), atomic force microscope (AFM), scanning electron probe micro-analyzer (EPMA) and nano-indentation analyzer were used. The results show depth of SURP-induced plastic deformation layer was about 330 μm. Meanwhile, the surface hardness and elastic modulus were increased but the surface roughness decreased obviously after SURP. After low-temperature gas carburizing, according to the results of the thickness, carbon concentration, nano-hardness and elastic modulus of the carburized layer, the conclusion is that surface self-nanocrystallization carried by SURP has a negative effect on the low-temperature gas carburizing for AISI316L austenitic stainless steel and with the increase of carburizing time, the greater the adverse effect on carburizing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-144

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Lu, (State Key Laboratory for RSA, et al. Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of the Concept behind a New Approach. Journal of Materials Science & Technology 15.3(1999) 193-197.

Google Scholar

[2] K. Lu, Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Materials Science & Engineering R-Reports 16.4(1996) 161-221.

DOI: 10.1016/0927-796x(95)00187-5

Google Scholar

[3] K. Lu, J. Lu, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Materials Science & Engineering A 375-377.1(2004) 38-45.

DOI: 10.1016/j.msea.2003.10.261

Google Scholar

[4] T. Roland, D. Retraint, K. Lu, J. Lu, Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability, Mater. Sci. Eng. A 445–446 (2007) 281–288.

DOI: 10.1016/j.msea.2006.09.041

Google Scholar

[5] C. C. Koch, Synthesis of Nanostructured Materials by Mechanical Milling: Problems and Opportunities. Nanostructured Materials 9.1-8(1997) 13-22.

DOI: 10.1016/s0965-9773(97)00014-7

Google Scholar

[6] H. J. Fecht, Nanostructure formation by mechanical attrition. Nanostructured Materials 6.1(1995) 33-42.

DOI: 10.1016/0965-9773(95)00027-5

Google Scholar

[7] N. R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K Lu, An investigation of surface nanocrystallization mechanism in fe induced by surface mechanical attrition treatment. Acta Materialia, 50(18) (2002) 4603-4616.

DOI: 10.1016/s1359-6454(02)00310-5

Google Scholar

[8] Y. Lin, J. Lu, L. Wang, T. Xu, Q. Xue, Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided aisi 321 stainless steel. Acta Materialia, 54(20) (2006) 5599-5605.

DOI: 10.1016/j.actamat.2006.08.014

Google Scholar

[9] Z Sun, D. Retraint, T. Baudin, Helbert, A. L, F. Brisset, M. Chemkhi, et al. Experimental study of microstructure changes due to low cycle fatigue of a steel nanocrystallised by surface mechanical attrition treatment (smat). Materials Characterization, 124 (2017) 117-121.

DOI: 10.1016/j.matchar.2016.12.017

Google Scholar

[10] Y. Liu, L. J. Wang, D. P. Wang, Y. Wang, Nano mechanical properties of 40cr surface layer after ultrasonic surface rolling processing. Journal of Tianjin University, 45(7) (2012), 656-661.

Google Scholar

[11] T. Wang, 40cr nano-crystallization by ultrasonic surface rolling extrusion processing. Journal of Mechanical Engineering, 45(5) (2009) 177.

DOI: 10.3901/jme.2009.05.177

Google Scholar

[12] G. Liu, S. C. Wang, X. F. Lou, J. Lu, K. Lu, Low carbon steel with nanostructured surface layer induced by high-energy shot peening. Scripta Materialia, 44(8) (2001) 1791-1795.

DOI: 10.1016/s1359-6462(01)00738-2

Google Scholar

[13] Y. M. Xing, J. Lu, An experimental study of residual stress induced by ultrasonic shot peening. Journal of Materials Processing Technology, 152(1) (2004) 56-61.

DOI: 10.1016/j.jmatprotec.2004.02.057

Google Scholar

[14] N. Li, S. Shi, J. Luo, J. Lu, N. Wang, Effects of surface nanocrystallization on the corrosion behaviors of 316l and alloy 690. Surface & Coatings Technology 309 (2016).

DOI: 10.1016/j.surfcoat.2016.11.052

Google Scholar

[15] Z. B. Wang, N. R. Tao, S. Li, W. Wang, G. Liu, J. Lu, et al. Effect of surface nanocrystallization on friction and wear properties in low carbon steel. Materials Science & Engineering A, 352(1) (2003) 144-149.

DOI: 10.1016/s0921-5093(02)00870-5

Google Scholar

[16] M. Jayalakshmi, P. Huilgol, B. R. Bhat, K. U. Bhat, Microstructural characterization of low-temperature plasma-nitrided 316l stainless steel surface with prior severe shot peening. Materials & Design, 108(2016) 448-454.

DOI: 10.1016/j.matdes.2016.07.005

Google Scholar

[17] M. R. Menezes, C. Godoy, V. T. L. Buono, M. M. M. Schvartzman, A. B. Wilson, Effect of shot peening and treatment temperature on wear and corrosion resistance of sequentially plasma treated aisi 316l steel. Surface & Coatings Technology (2016).

DOI: 10.1016/j.surfcoat.2016.12.037

Google Scholar

[18] L. Shen, L. Wang, Y. Wang, C. Wang, Plasma nitriding of AISI 304 austenitic stainless steel with pre-shot peening. Surf. Coat. Technol. 204 (2010) 3222–3227.

DOI: 10.1016/j.surfcoat.2010.03.018

Google Scholar

[19] M. Chemkhi, D. Retraint, A. Roos, C. Garnier, L. Waltz, C. Demangel, The effect of surface mechanical attrition treatment on low-temperature plasma nitriding of an austenitic stainless steel. Surface & Coatings Technology, 221(5) (2013) 191-195.

DOI: 10.1016/j.surfcoat.2013.01.047

Google Scholar

[20] M. Tsujikawa, D. Yoshida, N. Yamauchi, N. Ueda, T. Sone, V Tanaka, Surface material design of 316 stainless steel by combination of low-temperature carburizing and nitriding. Surface & Coatings Technology, 200(1-4) (2005) 507-511.

DOI: 10.1016/j.surfcoat.2005.02.051

Google Scholar

[21] Y. Chau, S. Z. Joe, The influence of chemical composition of stainless steel on the formation of low-temperature nitrided layer. Defect & Diffusion Forum, 326-328(1) (2012) 297-302.

DOI: 10.4028/www.scientific.net/ddf.326-328.297

Google Scholar

[22] E. Skolek, Modifying the properties of aisi 316l steel by glow discharge assisted low-temperature nitriding and oxynitriding. Vacuum, 85(2) (2010) 164-169.

DOI: 10.1016/j.vacuum.2010.05.006

Google Scholar

[23] Y. Sun, T. Bell, Sliding wear characteristics of low-temperature plasma nitrided 316 austenitic stainless steel. Wear, 218(1) (1998) 34-42.

DOI: 10.1016/s0043-1648(98)00199-9

Google Scholar

[24] M. Laleh, F. Kargar, M. Velashjerdi, Low-temperature nitriding of nanocrystalline stainless steel and its effect on improving wear and corrosion resistance, J. Mater. Eng. Perform. 22 (2013) 1304–1310.

DOI: 10.1007/s11665-012-0417-7

Google Scholar

[25] E. Menthe, A. Bulak, J. Olfe, A. Zimmermann, K.T. Rie, Improvement of the mechanical properties of austenitic stainless steel after plasma nitriding, Surf. Coat. Technol. 133–134 (2000) 259–263.

DOI: 10.1016/s0257-8972(00)00930-0

Google Scholar

[26] Y. Liu, L. Wang, D. Wang, Finite element modeling of ultrasonic surface rolling process. Journal of Materials Processing Tech, 211(12) (2011), 2106-2113.

DOI: 10.1016/j.jmatprotec.2011.07.009

Google Scholar

[27] L. Yang, W. Liang, D. Zhang, L. Shen, The effect of surface nanocrystallization on plasma nitriding behaviour of aisi 4140 steel. Applied Surface Science, 257(3) (2010) 979-984.

DOI: 10.1016/j.apsusc.2010.08.004

Google Scholar

[28] L. Ge, N. Tian, Z. Lu, C. You, Influence of the surface nanocrystallization on the gas nitriding of ti-6al-4v alloy. Applied Surface Science, 286(4) (2013) 412-416.

DOI: 10.1016/j.apsusc.2013.09.105

Google Scholar

[29] Y. Peng, J. Gong, Y. Jiang, M. Fu, D. Rong, The effect of plastic pre-strain on low-temperature surface carburization of aisi 304 austenitic stainless steel. Surface & Coatings Technology, 304 (2016) 16-22.

DOI: 10.1016/j.surfcoat.2016.05.047

Google Scholar

[30] T. Balusamy, T. S. N. S. Narayanan, K. Ravichandran, I. S. Park, H. L. Min, Plasma nitriding of aisi 304 stainless steel: role of surface mechanical attrition treatment. Materials Characterization, 85(6) (2013) 38-47.

DOI: 10.1016/j.matchar.2013.08.009

Google Scholar

[31] A. Nishimoto, K. Akamatsu, Effect of pre-deforming on low-temperature plasma nitriding of austenitic stainless steel, Plasma Process. Polym. 6 (2009) 306–309.

DOI: 10.1002/ppap.200930707

Google Scholar

[32] T. Agnieszka Krawczy, J. Zdunek, R. Sitek, Formation of the nitrided layers on an austenitic stainless steel with different grain structures. Advanced Engineering Materials, 1701049 (2018).

DOI: 10.1002/adem.201701049

Google Scholar

[33] Y.U. Guo, J. Gong, D. Rong, Y. Peng, F.U. Minghui, Effect of surface morphology on low-temperature gaseous carburization of 316l austenitic stainless steel. Hot Working Technology (2017).

Google Scholar