[1]
Vlot A, Gunnink J W. Fibre metal laminates: An introduction[M]. (2001).
Google Scholar
[2]
Shankar K. Fiber Metal Laminates-Matching the Best in Composites and Metals. Materials & Processing Report. 9 (2010) 114-119.
Google Scholar
[3]
Chai G B, Manikandan P. Low velocity impact response of fibre-metal laminates – A review. Composite Structures. 107 (2014) 107:363-381.
DOI: 10.1016/j.compstruct.2013.08.003
Google Scholar
[4]
Liao B B, Liu P F. Finite element analysis of dynamic progressive failure properties of GLARE hybrid laminates under low-velocity impact. Journal of Composite Materials. (2017) 002199831772421.
DOI: 10.1177/0021998317724216
Google Scholar
[5]
Richardson M O W, Wisheart M J. Review of low-velocity impact properties of composite materials. Composites Part A Applied Science & Manufacturing. 27 (1996) 1123-1131.
DOI: 10.1016/1359-835x(96)00074-7
Google Scholar
[6]
Yang B, He L, Gao Y. Simulation on impact response of FMLs: effect of fiber stacking sequence, thickness, and incident angle. Science & Engineering of Composite Materials, 2017, 25(3).
DOI: 10.1515/secm-2016-0226
Google Scholar
[7]
Sharma A P, Khan S H, Kitey R, et al. Effect of through thickness metal layer distribution on the low velocity impact response of fiber metal laminates. Polymer Testing. 65 (2018) 301-312.
DOI: 10.1016/j.polymertesting.2017.12.001
Google Scholar
[8]
Puck A, Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models. Composites Science & Technology. 62 (2002) 1633-1662.
DOI: 10.1016/s0266-3538(01)00208-1
Google Scholar
[9]
Wang Z W, Zhao J P Zhang X. Finite element analysis of composite laminates subjected to low-velocity impact based on multiple failure criteria. Material Research Express. 5(2018) 065320.
DOI: 10.1088/2053-1591/aacca3
Google Scholar
[10]
Camanho P P, Davila C G, De Moura M F. Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials. Journal of Composite Materials, 2003, 37(16):1415-1438.
DOI: 10.1177/0021998303034505
Google Scholar
[11]
Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. 7th Int Symp Ballist. (1983) 541–7.
Google Scholar
[12]
T. Pärnänen, R. Alderliesten, C. Rans, et al. Applicability of AZ31B-H24 magnesium in Fibre Metal Laminates – An experimental impact research. Composites Part A Applied Science & Manufacturing. 43 (2012) 1578-1586.
DOI: 10.1016/j.compositesa.2012.04.008
Google Scholar
[13]
Yang B, Wang Z, Zhou L, et al. Experimental and numerical investigation of interply hybrid composites based on woven fabrics and PCBT resin subjected to low-velocity impact[J]. Composite Structures, 2015, 132:464-476.
DOI: 10.1016/j.compstruct.2015.05.069
Google Scholar
[14]
Shi Y, Swait T, Soutis C. Modelling damage evolution in composite laminates subjected to low velocity impact. Composite Structures, 2012, 94(9):2902-2913.
DOI: 10.1016/j.compstruct.2012.03.039
Google Scholar
[15]
Liu P F, Liao B B, Jia L Y, et al. Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact. Composite Structures, 2016, 149:408-422.
DOI: 10.1016/j.compstruct.2016.04.012
Google Scholar