A more Accurate Constraint Parameter to Characterize the Creep Constraint Effect at Crack Tip of Cr-Mo-V Steel

Article Preview

Abstract:

A suitable constraint parameter is a key to quantify the creep crack tip constraint levels. In this study, a new more accurate creep constraint parameter As of brazed joint was proposed based on the existing constraint parameters R* and Ac. The CCG rate equation of Cr-Mo-V steel related to the constraint parameter As is obtained. The results show that the constraint parameter As is basically unchanged with the increase of creep time. The crack growth data predicted by the constraint dependent CCG rate equation are in good agreement with the experimental data. The established constraint dependent CCG rate equation can predict the CCG rate at other constraint levels very well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-85

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.F. Wen, A. Srivastava, A. Benzerga, S.T. Tu, A. Needleman, Creep crack growth by grain boundary cavitation under monotonic and cyclic loading, J. Mech. Phy. Solids 108 (2017) 68-84.

DOI: 10.1016/j.jmps.2017.07.018

Google Scholar

[2] Y.C. Zhang, W.C. Jiang, S.T. Tu, X.C. Zhang, Y.J. Ye, Creep crack growth behavior analysis of the 9Cr-1Mo steel by a modified creep-damage model, Mater. Sci. Eng. A 708 (2017) 68-76.

DOI: 10.1016/j.msea.2017.09.112

Google Scholar

[3] J.Z. He, G.Z. Wang, S.T. Tu, F.Z. Xuan, Characterization of 3-D creep constraint and creep crack growth rate in test specimens in ASTM-E1457 standard, Eng. Fract. Mech. 168 (2016) 131-146.

DOI: 10.1016/j.engfracmech.2016.10.009

Google Scholar

[4] J.Z. He, G.Z. Wang, S.T. Tu, F.Z. Xuan, Effect of constraint on creep crack initiation time in test specimens in ASTM-E1457 standard, Eng. Fract. Mech. 176 (2017) 61-73.

DOI: 10.1016/j.engfracmech.2017.02.021

Google Scholar

[5] L.Y. Xu, X.F. Zhang, L. Zhao, Y.D. Han, H.Y. Jing, Quantifying the creep crack-tip constraint effects using a load-independent constraint parameter Q*, Int. J. Mech. Sci. 119 (2016) 320-332.

DOI: 10.1016/j.ijmecsci.2016.11.002

Google Scholar

[6] L. Zhao, H.Y. Jing, J.J. Xiu, Y.D. Han, L.Y. Xu, Experimental investigation of specimen size effect on creep crack growth behavior in P92 steel welded joint, Mater. Des. 57(1) (2014) 736-743.

DOI: 10.1016/j.matdes.2013.12.062

Google Scholar

[7] P. Budden, R. Ainsworth, The effect of constraint on creep fracture assessments, Int. J. Fract. 97 (1999) 237-247.

Google Scholar

[8] Y.J. Chao, X.K. Zhu, L. Zhang, Higher-order asymptotic crack-tip fields in a power-law creeping material, Int. J. Solids Struct. 38 (2001) 3853-3875.

DOI: 10.1016/s0020-7683(00)00255-9

Google Scholar

[9] G.Z. Wang, X.L. Liu, F.Z. Xuan, S.T. Tu, Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens, Int. J. Solids Struct. 47 (2010) 51-57.

DOI: 10.1016/j.ijsolstr.2009.09.015

Google Scholar

[10] J. P. Tan, G. Z. Wang, S. T. Tu, F. Z. Xuan, Load-independent creep constraint parameter and its application, Eng. Fract. Mech. 116 (2014) 41-57.

DOI: 10.1016/j.engfracmech.2013.12.015

Google Scholar

[11] H.S.Ma, G.Z. Wang, F.Z. Xuan, S.T. Tu, Unified characterization of in-plane and out-of-plane creep constraint based on crack-tip equivalent creep strain, Eng. Fract. Mech. 142 (2015) 1-20.

DOI: 10.1016/j.engfracmech.2015.05.044

Google Scholar

[12] J. P. Tan, S. T. Tu, G. Z. Wang, F. Z. Xuan, Effect and mechanism of out-of-plane constraint on creep crack growth behavior of a Cr-Mo-V steel, Eng. Fract. Mech. 99 (2013) 324-334.

DOI: 10.1016/j.engfracmech.2013.01.017

Google Scholar

[13] J.F. Wen, S.T. Tu, X.L. Gao, J.N. Reddy, Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model, Eng. Fract. Mech. 98 (2013)169-184.

DOI: 10.1016/j.engfracmech.2012.12.014

Google Scholar

[14] M. Yatomi, K.M. Nikbin, N.P. O' Dowd, Creep crack growth prediction using a damage based approach, Int. J. Pres. Ves. Pip. 80 (2003) 573-583.

DOI: 10.1016/s0308-0161(03)00110-8

Google Scholar

[15] A.F. Cocks, M.F. Ashby, Intergranular fracture during power-law creep under multiaxial stresses, Metal Sci. 8 (1980) 395-402.

DOI: 10.1179/030634580790441187

Google Scholar

[16] H. S. Ma, G. Z. Wang, S. Liu, S. T. Tu, F. Z. Xuan, In-plane and out-of-plane unified constraint-dependent creep crack growth rate of 316H steel, Eng. Fract. Mech. 155 (2016) 88-101.

DOI: 10.1016/j.engfracmech.2016.01.017

Google Scholar

[17] S.Liu, G.Z. Wang, S.T. Tu, F.Z. Xuan, Creep crack growth prediction and assessment incorporating constraint effect for pressurized pipes with axial surface cracks, Eng. Fract. Mech. 154 (2016) 92-110.

DOI: 10.1016/j.engfracmech.2016.01.009

Google Scholar

[18] J.Z. He, G.Z. Wang, S.T. Tu, F.Z. Xuan, Prediction of creep crack initiation behavior considering constraint effects for cracked pipes, Eng. Fract. Mech. 190 (2018) 213-231.

DOI: 10.1016/j.engfracmech.2017.12.024

Google Scholar