[1]
J.F. Wen, A. Srivastava, A. Benzerga, S.T. Tu, A. Needleman, Creep crack growth by grain boundary cavitation under monotonic and cyclic loading, J. Mech. Phy. Solids 108 (2017) 68-84.
DOI: 10.1016/j.jmps.2017.07.018
Google Scholar
[2]
Y.C. Zhang, W.C. Jiang, S.T. Tu, X.C. Zhang, Y.J. Ye, Creep crack growth behavior analysis of the 9Cr-1Mo steel by a modified creep-damage model, Mater. Sci. Eng. A 708 (2017) 68-76.
DOI: 10.1016/j.msea.2017.09.112
Google Scholar
[3]
J.Z. He, G.Z. Wang, S.T. Tu, F.Z. Xuan, Characterization of 3-D creep constraint and creep crack growth rate in test specimens in ASTM-E1457 standard, Eng. Fract. Mech. 168 (2016) 131-146.
DOI: 10.1016/j.engfracmech.2016.10.009
Google Scholar
[4]
J.Z. He, G.Z. Wang, S.T. Tu, F.Z. Xuan, Effect of constraint on creep crack initiation time in test specimens in ASTM-E1457 standard, Eng. Fract. Mech. 176 (2017) 61-73.
DOI: 10.1016/j.engfracmech.2017.02.021
Google Scholar
[5]
L.Y. Xu, X.F. Zhang, L. Zhao, Y.D. Han, H.Y. Jing, Quantifying the creep crack-tip constraint effects using a load-independent constraint parameter Q*, Int. J. Mech. Sci. 119 (2016) 320-332.
DOI: 10.1016/j.ijmecsci.2016.11.002
Google Scholar
[6]
L. Zhao, H.Y. Jing, J.J. Xiu, Y.D. Han, L.Y. Xu, Experimental investigation of specimen size effect on creep crack growth behavior in P92 steel welded joint, Mater. Des. 57(1) (2014) 736-743.
DOI: 10.1016/j.matdes.2013.12.062
Google Scholar
[7]
P. Budden, R. Ainsworth, The effect of constraint on creep fracture assessments, Int. J. Fract. 97 (1999) 237-247.
Google Scholar
[8]
Y.J. Chao, X.K. Zhu, L. Zhang, Higher-order asymptotic crack-tip fields in a power-law creeping material, Int. J. Solids Struct. 38 (2001) 3853-3875.
DOI: 10.1016/s0020-7683(00)00255-9
Google Scholar
[9]
G.Z. Wang, X.L. Liu, F.Z. Xuan, S.T. Tu, Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens, Int. J. Solids Struct. 47 (2010) 51-57.
DOI: 10.1016/j.ijsolstr.2009.09.015
Google Scholar
[10]
J. P. Tan, G. Z. Wang, S. T. Tu, F. Z. Xuan, Load-independent creep constraint parameter and its application, Eng. Fract. Mech. 116 (2014) 41-57.
DOI: 10.1016/j.engfracmech.2013.12.015
Google Scholar
[11]
H.S.Ma, G.Z. Wang, F.Z. Xuan, S.T. Tu, Unified characterization of in-plane and out-of-plane creep constraint based on crack-tip equivalent creep strain, Eng. Fract. Mech. 142 (2015) 1-20.
DOI: 10.1016/j.engfracmech.2015.05.044
Google Scholar
[12]
J. P. Tan, S. T. Tu, G. Z. Wang, F. Z. Xuan, Effect and mechanism of out-of-plane constraint on creep crack growth behavior of a Cr-Mo-V steel, Eng. Fract. Mech. 99 (2013) 324-334.
DOI: 10.1016/j.engfracmech.2013.01.017
Google Scholar
[13]
J.F. Wen, S.T. Tu, X.L. Gao, J.N. Reddy, Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model, Eng. Fract. Mech. 98 (2013)169-184.
DOI: 10.1016/j.engfracmech.2012.12.014
Google Scholar
[14]
M. Yatomi, K.M. Nikbin, N.P. O' Dowd, Creep crack growth prediction using a damage based approach, Int. J. Pres. Ves. Pip. 80 (2003) 573-583.
DOI: 10.1016/s0308-0161(03)00110-8
Google Scholar
[15]
A.F. Cocks, M.F. Ashby, Intergranular fracture during power-law creep under multiaxial stresses, Metal Sci. 8 (1980) 395-402.
DOI: 10.1179/030634580790441187
Google Scholar
[16]
H. S. Ma, G. Z. Wang, S. Liu, S. T. Tu, F. Z. Xuan, In-plane and out-of-plane unified constraint-dependent creep crack growth rate of 316H steel, Eng. Fract. Mech. 155 (2016) 88-101.
DOI: 10.1016/j.engfracmech.2016.01.017
Google Scholar
[17]
S.Liu, G.Z. Wang, S.T. Tu, F.Z. Xuan, Creep crack growth prediction and assessment incorporating constraint effect for pressurized pipes with axial surface cracks, Eng. Fract. Mech. 154 (2016) 92-110.
DOI: 10.1016/j.engfracmech.2016.01.009
Google Scholar
[18]
J.Z. He, G.Z. Wang, S.T. Tu, F.Z. Xuan, Prediction of creep crack initiation behavior considering constraint effects for cracked pipes, Eng. Fract. Mech. 190 (2018) 213-231.
DOI: 10.1016/j.engfracmech.2017.12.024
Google Scholar