[1]
Bement, A.L. FUNDAMENTAL MATERIALS PROBLEMS IN NUCLEAR REACTORS, Journal of the American Society for Naval Engineers. 69 (1970) 37–44.
Google Scholar
[2]
Fujii K, Fukuya K. Characterization of defect clusters in ion-irradiated A533B steel, Journal of Nuclear Materials. 336 (2005) 323-30.
DOI: 10.1016/j.jnucmat.2004.10.090
Google Scholar
[3]
Lambrecht M, Almazouzi A. Positron annihilation study of neutron irradiated model alloys and of a reactor pressure vessel steel, Journal of Nuclear Materials. 385 (2009) 334-8.
DOI: 10.1016/j.jnucmat.2008.12.020
Google Scholar
[4]
Li XH, Lei J, Shu GG, Wan QM. A study on the microstructure and mechanical property of proton irradiated A508-3 steel, Nuclear Instruments & Methods in Physics Research. 350 (2015) 14-9.
DOI: 10.1016/j.nimb.2015.03.037
Google Scholar
[5]
Yu M, Luo Z, Chao YJ. Correlations Between Charpy V-Notch Impact Energy and Fracture Toughness of Nuclear Reactor Pressure Vessel (RPV) Steels. In: ASME 2015 Pressure Vessels and Piping Conference. (2015).
DOI: 10.1115/pvp2015-45747
Google Scholar
[6]
Wright S. The Interpretation of Population Structure by F-Statistics with Special Regard to Systems of Mating, Evolution. 19 (1965) 395-420.
DOI: 10.1111/j.1558-5646.1965.tb01731.x
Google Scholar
[7]
Fukakura J, Asano M, Kikuchi M, Ishikawa M. Effect of thermal aging on fracture toughness of RPV steel ☆, Nuclear Engineering & Design. 144 (1993) 423-9.
DOI: 10.1016/0029-5493(93)90037-a
Google Scholar
[8]
HayatoNAKATA, KatsuhikoFUJII, KojiFUKUYA, RyutaKASADA, AkihikoKIMURA. Grain Boundary Phosphorus Segregation in Thermally Aged Low Alloy Steels, Journal of Nuclear Science & Technology. 43 (2006) 785-93.
DOI: 10.1080/18811248.2006.9711160
Google Scholar
[9]
Shiba K, Tanigawa H, Hirose T, Sakasegawa H, Jitsukawa S. Long-term properties of reduced activation ferritic/martensitic steels for fusion reactor blanket system, Fusion Engineering & Design. 86 (2011) 2895-9.
DOI: 10.1016/j.fusengdes.2011.06.005
Google Scholar
[10]
Wang W, Liu S, Xu G, Zhang B, Huang Q. Effect of Thermal Aging on Microstructure and Mechanical Properties of China Low-Activation Martensitic Steel at 550 °C, Nuclear Engineering & Technology. 48 (2016) 518-24.
DOI: 10.1016/j.net.2015.11.004
Google Scholar
[11]
Sahoo KC, Vanaja J, Parameswaran P, Vijayanand VD, Laha K. Effect of thermal ageing on microstructure, tensile and impact properties of reduced activated ferritic-martensitic steel, Materials Science & Engineering A. 686 (2017) 54-64.
DOI: 10.1016/j.msea.2017.01.030
Google Scholar
[12]
Barsom JM, Rolfe ST. Fracture and fatigue control in structures : applications of fracture mechanics, (1999).
DOI: 10.1520/mnl41-3rd-eb
Google Scholar
[13]
Eichler B, Feldmann M, Kühn B, Stranghöner N, Sedlacek G, Kouhi J, et al. Choice of Steel Material to avoid Brittle Fracture for Hollow Section Structures - JRC Scientific and Policy Reports, (2012).
DOI: 10.1201/b13139-107
Google Scholar
[14]
Xing R, Yu D, Xie G, Yang Z, Wang X, Chen X. Effect of thermal aging on mechanical properties of a bainitic forging steel for reactor pressure vessel, Materials Science & Engineering A. 720 (2018).
DOI: 10.1016/j.msea.2018.02.036
Google Scholar