[1]
Manahan M P, Argon A S, Harling O K. The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties. J Nucl Mater 1981; 104:1545-1550.
DOI: 10.1016/0022-3115(82)90820-0
Google Scholar
[2]
Huang FH, Hamilton ML, Wire GL. Bend testing for miniature disks. Nucl Technol 1982; 57: 234-242.
DOI: 10.13182/nt82-a26286
Google Scholar
[3]
Mao X, Takahashi H. Development of a further-miniaturized specimen of 3 mm diameter for tem disk (ø 3 mm) small punch tests. J Nucl Mater 1987; 150: 42-52.
DOI: 10.1016/0022-3115(87)90092-4
Google Scholar
[4]
Finarelli D, Roedig M, Carsughi F. Small punch tests on austenitic and martensitic steels irradiated in a spallation environment with 530 MeV protons. J Nucl Mater 2004; 328: 146-150.
DOI: 10.1016/j.jnucmat.2004.04.320
Google Scholar
[5]
Fernández M, Rodríguez C, Belzunce F J, García T E. Use of small punch test to estimate the mechanical properties of sintered products and application to synchronizer hubs. Metal Powder Report 2017; 72(5): 355-360.
DOI: 10.1016/j.mprp.2016.02.056
Google Scholar
[6]
García T E, Rodríguez C, Belzunce F J. Estimation of the mechanical properties of metallic materials by means of the small punch test. J Alloys Compd 2014; 582: 708-717.
DOI: 10.1016/j.jallcom.2013.08.009
Google Scholar
[7]
Rodríguez C, Cárdenas E, Belzunce F J, Betegón C. Fracture Characterization of Steels by Means of the Small Punch Test. Exp Mech 2013; 53: 385-392.
DOI: 10.1007/s11340-012-9637-x
Google Scholar
[8]
Abendroth M, Kuna M. Identification of ductile damage and fracture parameters from the small punch test using neural networks. Eng Fract Mech 2006; 73: 710-725.
DOI: 10.1016/j.engfracmech.2005.10.007
Google Scholar
[9]
Husain A, Sehgal D K, Pandey R K. An inverse finite element procedure for the determination of constitutive tensile behavior of materials using miniature specimen. Comput Mater Sci 2004; 31: 84-92.
DOI: 10.1016/j.commatsci.2004.01.039
Google Scholar
[10]
Yang S, Cao Y, Ling X, Qian Y. Assessment of mechanical properties of Incoloy800H by means of small punch test and inverse analysis. J Alloys Compd 2017; 695: 2499-2505.
DOI: 10.1016/j.jallcom.2016.11.151
Google Scholar
[11]
Lin K Y, Tong P. Singular finite elements for the fracture analysis of V-notched plate. Int J Numer Methods Eng 1980; 15(9): 1343-1354.
DOI: 10.1002/nme.1620150907
Google Scholar
[12]
Cuesta II, Alegre J M. Determination of the fracture toughness by applying a structural integrity approach to pre-cracked Small Punch Test specimens. Eng Fract Mech 2011; 78(2): 289-300.
DOI: 10.1016/j.engfracmech.2010.09.004
Google Scholar
[13]
Chang Y S, Kim J M, Choi J B, Kim Y J, Kim M C, Lee B S. Derivation of ductile fracture resistance by use of small punch specimens. Eng Fract Mech 2008; 75: 3413-3427.
DOI: 10.1016/j.engfracmech.2007.06.006
Google Scholar
[14]
Yao D, Cai L X, Bao C. A new fracture criterion for ductile materials based on a finite element aided testing method. Mater Sci Eng, A 2016; 673: 633-647.
DOI: 10.1016/j.msea.2016.06.076
Google Scholar
[15]
Yao D, Cai L, Bao C. A new approach on necking constitutive relationships of ductile materials at elevated temperatures. Chinese J Aeronaut. 2016; 29: 1626-1634.
DOI: 10.1016/j.cja.2016.10.011
Google Scholar
[16]
Peng Y, Cai L X, Chen H, Bao C. A new method based on energy principle to predict uniaxial stress-strain relations of ductile materials by small punch testing. Int J Mech Sci 2018; 138-139: 244-249.
DOI: 10.1016/j.ijmecsci.2018.02.011
Google Scholar
[17]
Chen H, Cai L X. Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle. Acta Mater. 2016; 121: 181-189.
DOI: 10.1016/j.actamat.2016.09.008
Google Scholar
[18]
Peng Y, Cai L X, Chen H, Bao C. A novel semi-analytical method based on equivalent energy principle to obtain J resistance curves of ductile materials. Int J Mech Sci 2018; 148: 31-38.
DOI: 10.1016/j.ijmecsci.2018.08.016
Google Scholar
[19]
Bao C, Cai L X, He G W, Dan C. Normalization method for evaluating J-resistance curves of small-sized CIET specimen and crack front constraints. Int J Solids Struct 2016; 94: 60-75.
DOI: 10.1016/j.ijsolstr.2016.05.008
Google Scholar
[20]
Hutchinson J W. Singular behaviour at the end of a tensile crack in a hardening material. J Mech Phys Solids 1968; 16: 13-31.
DOI: 10.1016/0022-5096(68)90014-8
Google Scholar
[21]
Rice J R, Rosengren G F. Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 1968; 16: 1-12.
DOI: 10.1016/0022-5096(68)90013-6
Google Scholar
[22]
Shih C F. Tables of Hutchinson-Rice-Rosengren singular field quantities. Division of Engineering, Brown University, (1983).
Google Scholar
[23]
GB/T 21143-2014. Metallic materials-Unified method of test for determination of quasi-static fracture toughness. China; 2014. (In Chinese).
Google Scholar