A Novel Method to Predict the Mechanical Properties of DP600

Article Preview

Abstract:

A small punch testing (SPT)-related stress-strain relation (SPT-SR) model is used to obtain the stress-strain curve of DP600 according to Chen-Cai equivalent energy method. And then the SPT and notched small punch testing (NSPT) specimens were simulated in order to determine the critical fracture criterion of DP600 on the basis of the stress-strain curve obtained by SPT-SR model. Lastly, the J resistance curve of small C-shaped inside edge-notched tension (CIET) specimen for DP600 dual-phase steel was successfully predicted based on the aforementioned fracture criterion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-28

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Manahan M P, Argon A S, Harling O K. The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties. J Nucl Mater 1981; 104:1545-1550.

DOI: 10.1016/0022-3115(82)90820-0

Google Scholar

[2] Huang FH, Hamilton ML, Wire GL. Bend testing for miniature disks. Nucl Technol 1982; 57: 234-242.

DOI: 10.13182/nt82-a26286

Google Scholar

[3] Mao X, Takahashi H. Development of a further-miniaturized specimen of 3 mm diameter for tem disk (ø 3 mm) small punch tests. J Nucl Mater 1987; 150: 42-52.

DOI: 10.1016/0022-3115(87)90092-4

Google Scholar

[4] Finarelli D, Roedig M, Carsughi F. Small punch tests on austenitic and martensitic steels irradiated in a spallation environment with 530 MeV protons. J Nucl Mater 2004; 328: 146-150.

DOI: 10.1016/j.jnucmat.2004.04.320

Google Scholar

[5] Fernández M, Rodríguez C, Belzunce F J, García T E. Use of small punch test to estimate the mechanical properties of sintered products and application to synchronizer hubs. Metal Powder Report 2017; 72(5): 355-360.

DOI: 10.1016/j.mprp.2016.02.056

Google Scholar

[6] García T E, Rodríguez C, Belzunce F J. Estimation of the mechanical properties of metallic materials by means of the small punch test. J Alloys Compd 2014; 582: 708-717.

DOI: 10.1016/j.jallcom.2013.08.009

Google Scholar

[7] Rodríguez C, Cárdenas E, Belzunce F J, Betegón C. Fracture Characterization of Steels by Means of the Small Punch Test. Exp Mech 2013; 53: 385-392.

DOI: 10.1007/s11340-012-9637-x

Google Scholar

[8] Abendroth M, Kuna M. Identification of ductile damage and fracture parameters from the small punch test using neural networks. Eng Fract Mech 2006; 73: 710-725.

DOI: 10.1016/j.engfracmech.2005.10.007

Google Scholar

[9] Husain A, Sehgal D K, Pandey R K. An inverse finite element procedure for the determination of constitutive tensile behavior of materials using miniature specimen. Comput Mater Sci 2004; 31: 84-92.

DOI: 10.1016/j.commatsci.2004.01.039

Google Scholar

[10] Yang S, Cao Y, Ling X, Qian Y. Assessment of mechanical properties of Incoloy800H by means of small punch test and inverse analysis. J Alloys Compd 2017; 695: 2499-2505.

DOI: 10.1016/j.jallcom.2016.11.151

Google Scholar

[11] Lin K Y, Tong P. Singular finite elements for the fracture analysis of V-notched plate. Int J Numer Methods Eng 1980; 15(9): 1343-1354.

DOI: 10.1002/nme.1620150907

Google Scholar

[12] Cuesta II, Alegre J M. Determination of the fracture toughness by applying a structural integrity approach to pre-cracked Small Punch Test specimens. Eng Fract Mech 2011; 78(2): 289-300.

DOI: 10.1016/j.engfracmech.2010.09.004

Google Scholar

[13] Chang Y S, Kim J M, Choi J B, Kim Y J, Kim M C, Lee B S. Derivation of ductile fracture resistance by use of small punch specimens. Eng Fract Mech 2008; 75: 3413-3427.

DOI: 10.1016/j.engfracmech.2007.06.006

Google Scholar

[14] Yao D, Cai L X, Bao C. A new fracture criterion for ductile materials based on a finite element aided testing method. Mater Sci Eng, A 2016; 673: 633-647.

DOI: 10.1016/j.msea.2016.06.076

Google Scholar

[15] Yao D, Cai L, Bao C. A new approach on necking constitutive relationships of ductile materials at elevated temperatures. Chinese J Aeronaut. 2016; 29: 1626-1634.

DOI: 10.1016/j.cja.2016.10.011

Google Scholar

[16] Peng Y, Cai L X, Chen H, Bao C. A new method based on energy principle to predict uniaxial stress-strain relations of ductile materials by small punch testing. Int J Mech Sci 2018; 138-139: 244-249.

DOI: 10.1016/j.ijmecsci.2018.02.011

Google Scholar

[17] Chen H, Cai L X. Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle. Acta Mater. 2016; 121: 181-189.

DOI: 10.1016/j.actamat.2016.09.008

Google Scholar

[18] Peng Y, Cai L X, Chen H, Bao C. A novel semi-analytical method based on equivalent energy principle to obtain J resistance curves of ductile materials. Int J Mech Sci 2018; 148: 31-38.

DOI: 10.1016/j.ijmecsci.2018.08.016

Google Scholar

[19] Bao C, Cai L X, He G W, Dan C. Normalization method for evaluating J-resistance curves of small-sized CIET specimen and crack front constraints. Int J Solids Struct 2016; 94: 60-75.

DOI: 10.1016/j.ijsolstr.2016.05.008

Google Scholar

[20] Hutchinson J W. Singular behaviour at the end of a tensile crack in a hardening material. J Mech Phys Solids 1968; 16: 13-31.

DOI: 10.1016/0022-5096(68)90014-8

Google Scholar

[21] Rice J R, Rosengren G F. Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 1968; 16: 1-12.

DOI: 10.1016/0022-5096(68)90013-6

Google Scholar

[22] Shih C F. Tables of Hutchinson-Rice-Rosengren singular field quantities. Division of Engineering, Brown University, (1983).

Google Scholar

[23] GB/T 21143-2014. Metallic materials-Unified method of test for determination of quasi-static fracture toughness. China; 2014. (In Chinese).

Google Scholar