[1]
S. Pearson, Initiation of fatigue cracks in commercial aluminium alloys and the subsequent propagation of very short cracks, Eng. Fract. Mech. 7 (1975) 235-247.
DOI: 10.1016/0013-7944(75)90004-1
Google Scholar
[2]
J. Lankford, The influence of microstructure on the growth of small fatigue cracks, Fatigue Fract. Eng. Mater. Struct. 8 (1985) 161-175.
DOI: 10.1111/j.1460-2695.1985.tb01201.x
Google Scholar
[3]
M. Endo, A.J. McEvily, Fatigue crack growth from small defects under out-of-phase combined loading, Eng. Fract. Mech. 78 (2011) 1529-1541.
DOI: 10.1016/j.engfracmech.2010.12.011
Google Scholar
[4]
R. Jiang, N. Karpasitis, N. Gao, P.A.S. Reed, Effects of microstructures on fatigue crack initiation and short crack propagation at room temperature in an advanced disc superalloy, Mater. Sci. Eng. A 641 (2015) 148-159.
DOI: 10.1016/j.msea.2015.05.065
Google Scholar
[5]
G.J. Deng, S.T. Tu, X.C. Zhang, J. Wang, C.C. Zhang, X.Y. Qian, Y.N. Wang, Small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169 at 650 C in air, Eng. Fract. Mech. 153 (2016) 35-49.
DOI: 10.1016/j.engfracmech.2015.12.014
Google Scholar
[6]
L. Zhu, Z.R. Wu, X.T. Hu, Y.D. Song, Investigation of small fatigue crack initiation and growth behaviour of nickel base superalloy GH4169, Fatigue Fract. Eng. Mater. Struct. 39 (2016) 1150-1160.
DOI: 10.1111/ffe.12430
Google Scholar
[7]
W. Qiu, X. Ma, S. Rui, H.J. Shi, Crystallographic analysis on small fatigue crack propagation behaviour of a nickel‐based single crystal superalloy, Fatigue Fract. Eng. Mater. Struct. 40 (2017) 3-11.
DOI: 10.1111/ffe.12465
Google Scholar
[8]
R.O. Ritchie, J.O. Peters, Small fatigue cracks: mechanics, mechanisms and engineering applications, Mater. Trans. 42 (2001) 58-67.
DOI: 10.2320/matertrans.42.58
Google Scholar
[9]
S. Suresh, Fatigue of Materials, second ed., Cambridge University Press, London, (1998).
Google Scholar
[10]
P. Guo, Y.Q. Zhao, W.D. Zeng, Q. Hong, The effect of microstructure on the mechanical properties of TC4-DT titanium alloys, Mater Sci. Eng. A 563 (2013) 106-111.
DOI: 10.1016/j.msea.2012.11.033
Google Scholar
[11]
T. Akahori, M. Niinomi, K. Fukunaga, I. Inagaki, Effects of microstructure on the short fatigue crack initiation and propagation characteristics of biomedical α/β titanium alloys, Metall. Mater. Trans. A 31 (2000) 1949-1958.
DOI: 10.1007/s11661-000-0222-z
Google Scholar
[12]
K. Sadananda, A.K. Vasudevan, Fatigue crack growth behavior of titanium alloys, Int. J. Fatigue 27 (2005) 1255-1266.
DOI: 10.1016/j.ijfatigue.2005.07.001
Google Scholar
[13]
K. Zhang, X. Wu, C.H.J. Davies, Effect of microtexture on short crack propagation in two-phase titanium alloys, Int. J. Fatigue 104 (2017) 206-220.
DOI: 10.1016/j.ijfatigue.2017.07.022
Google Scholar
[14]
J.B. Jordon, J.D. Bernard, J.C. Newman, Quantifying microstructurally small fatigue crack growth in an aluminum alloy using a silicon-rubber replica method, Int. J. Fatigue 36 (2012) 206-210.
DOI: 10.1016/j.ijfatigue.2011.07.016
Google Scholar
[15]
X. Demulsant, J. Mendez, Microstructural effects on small fatigue crack initiation and growth in Ti6A14V alloys, Fatigue Fract. Eng. Mater. Struct. 18 (1995) 1483-1497.
DOI: 10.1111/j.1460-2695.1995.tb00870.x
Google Scholar
[16]
G. Lütjering, Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys, Mater. Sci. Eng. A 243 (1998) 32-45.
Google Scholar
[17]
O. Jin, R.W. Hamm, W.S. Johnson, Microstructural influences on the growth of small cracks in Ti-6Al-4V, Fatigue Fract. Eng. Mater. Struct. 25 (2002) 563-574.
DOI: 10.1046/j.1460-2695.2002.00500.x
Google Scholar
[18]
R. Wanhill, S. Barter, Fatigue of beta processed and beta heat-treated titanium alloys, Springer, (2011).
DOI: 10.1007/978-94-007-2524-9_4
Google Scholar
[19]
A.L. Dowson, A.C. Hollis, C.J. Beevers, The effect of the alpha-phase volume fraction and stress ratio on the fatigue crack growth characteristics of the near-alpha IMI 834 Ti alloy, Int. J. Fatigue 14 (1992) 261-270.
DOI: 10.1016/0142-1123(92)90010-a
Google Scholar