[1]
A.V. Eletskii, I.M. Iskandarova, A.A. Knizhnik, D.N. Krasikov, Graphene: fabrication methods and thermophysical properties, Phys-Usp+ 54 (2011) 227-258.
DOI: 10.3367/ufne.0181.201103a.0233
Google Scholar
[2]
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306 (2004) 666-669.
DOI: 10.1126/science.1102896
Google Scholar
[3]
Y. Wu, Y.-M. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, Y. Zhu, P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon, Nature 472 (2011) 74-78.
DOI: 10.1038/nature09979
Google Scholar
[4]
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nature Mater. 6 (2007) 652-655.
DOI: 10.1038/nmat1967
Google Scholar
[5]
A.A. Lebedev, V.Y. Davydov, D.P. Litvin, S.N. Novikov, Y.N. Makarov, V.B. Klimovich, M.P. Samoilovich, Graphene-based biosensors, Techn. Phys. Lett. 42 (2016) 729-732.
DOI: 10.1134/s1063785016070233
Google Scholar
[6]
D. Kireev, S. Seyock, M. Ernst, V. Maybeck, B. Wolfrum, A. Offenhäusser, Versatile Flexible Graphene Multielectrode Arrays, Biosensors 7 (2017) 1-9.
DOI: 10.3390/bios7010001
Google Scholar
[7]
V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications, Chem. Rev. 112 (2012) 6156-6214.
DOI: 10.1021/cr3000412
Google Scholar
[8]
Z. Tehrani, G. Burwell, M.A. Mohd Azmi, A. Castaing, R. Rickman, J. Almarashi, P. Dunstan, A. Miran Beigi, S.H. Doak, O.J. Guy, Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker, 2D Mater. 1 (2014) 025004.
DOI: 10.1088/2053-1583/1/2/025004
Google Scholar
[9]
V.Yu. Davydov, D.Yu. Usachov, S.P. Lebedev, A.N. Smirnov, V.S. Levitskii, I.A. Eliseyev, P.A. Alekseev, M.S. Dunaevskiy, O.Yu. Vilkov, A.G. Rybkin, A.A. Lebedeva, Study of the Crystal and Electronic Structure of Graphene Films Grown on 6H-SiC (0001), Semiconductors+ 51 (2017) 1072-1080.
DOI: 10.1134/s1063782617080073
Google Scholar
[10]
Y. Matsuda, W.-Q. Deng, W.A. Goddard, Contact Resistance for End-Contacted, Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics, J. Phys. Chem. C 114 (2010) 17845-17850.
DOI: 10.1021/jp806437y
Google Scholar
[11]
J. Borysiuk, R. Bożek, W. Strupiński, A. Wysmołek, K. Grodecki, R. Stępniewski, J.M. Baranowski, Transmission electron microscopy and scanning tunneling microscopy investigations of graphene on 4H-SiC(0001), J. Appl. Physics 105 (2009) 023503.
DOI: 10.1063/1.3065481
Google Scholar
[12]
S. Kopylov, A. Tzalenchuk, S. Kubatkin, V. Fal'ko1, Charge transfer between epitaxial graphene and silicon carbide, Appl. Phys. Lett. 97 (2010) 112109.
DOI: 10.1063/1.3487782
Google Scholar
[13]
Y.-P. Lin, Y. Ksari, J.-M. Themlin, Hydrogenation of the buffer-layer graphene on 6H-SiC (0001): A possible route for the engineering of graphene-based devices, Nano Res. 8 (2015) 839-850.
DOI: 10.1007/s12274-014-0566-0
Google Scholar