Electrochemical Treatment of Graphene

Article Preview

Abstract:

Treatment of graphene/SiC dies in inorganic electrolytes (KOH, KCl and Na2SO4) is discussed. An electrochemical method based on the cyclic voltammetry in a conventional three-electrode cell with Ag/AgCl reference electrode, a platinum counter electrode, and the graphene/SiC dies as working electrode (anode) is used for the treatment. It was observed either partial oxidation of graphene or its complete dissolution with the formation of CO2. The treatment performed resulted in the deterioration of the graphene films and change of the graphene-die resistivity depending on the range of the scanning potential applied to the graphene/SiC dies.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] A.V. Eletskii, I.M. Iskandarova, A.A. Knizhnik, D.N. Krasikov, Graphene: fabrication methods and thermophysical properties, Phys-Usp+ 54 (2011) 227-258.

DOI: 10.3367/ufne.0181.201103a.0233

Google Scholar

[2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[3] Y. Wu, Y.-M. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, Y. Zhu, P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon, Nature 472 (2011) 74-78.

DOI: 10.1038/nature09979

Google Scholar

[4] F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nature Mater. 6 (2007) 652-655.

DOI: 10.1038/nmat1967

Google Scholar

[5] A.A. Lebedev, V.Y. Davydov, D.P. Litvin, S.N. Novikov, Y.N. Makarov, V.B. Klimovich, M.P. Samoilovich, Graphene-based biosensors, Techn. Phys. Lett. 42 (2016) 729-732.

DOI: 10.1134/s1063785016070233

Google Scholar

[6] D. Kireev, S. Seyock, M. Ernst, V. Maybeck, B. Wolfrum, A. Offenhäusser, Versatile Flexible Graphene Multielectrode Arrays, Biosensors 7 (2017) 1-9.

DOI: 10.3390/bios7010001

Google Scholar

[7] V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications, Chem. Rev. 112 (2012) 6156-6214.

DOI: 10.1021/cr3000412

Google Scholar

[8] Z. Tehrani, G. Burwell, M.A. Mohd Azmi, A. Castaing, R. Rickman, J. Almarashi, P. Dunstan, A. Miran Beigi, S.H. Doak, O.J. Guy, Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker, 2D Mater. 1 (2014) 025004.

DOI: 10.1088/2053-1583/1/2/025004

Google Scholar

[9] V.Yu. Davydov, D.Yu. Usachov, S.P. Lebedev, A.N. Smirnov, V.S. Levitskii, I.A. Eliseyev, P.A. Alekseev, M.S. Dunaevskiy, O.Yu. Vilkov, A.G. Rybkin, A.A. Lebedeva, Study of the Crystal and Electronic Structure of Graphene Films Grown on 6H-SiC (0001), Semiconductors+ 51 (2017) 1072-1080.

DOI: 10.1134/s1063782617080073

Google Scholar

[10] Y. Matsuda, W.-Q. Deng, W.A. Goddard, Contact Resistance for End-Contacted, Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics, J. Phys. Chem. C 114 (2010) 17845-17850.

DOI: 10.1021/jp806437y

Google Scholar

[11] J. Borysiuk, R. Bożek, W. Strupiński, A. Wysmołek, K. Grodecki, R. Stępniewski, J.M. Baranowski, Transmission electron microscopy and scanning tunneling microscopy investigations of graphene on 4H-SiC(0001), J. Appl. Physics 105 (2009) 023503.

DOI: 10.1063/1.3065481

Google Scholar

[12] S. Kopylov, A. Tzalenchuk, S. Kubatkin, V. Fal'ko1, Charge transfer between epitaxial graphene and silicon carbide, Appl. Phys. Lett. 97 (2010) 112109.

DOI: 10.1063/1.3487782

Google Scholar

[13] Y.-P. Lin, Y. Ksari, J.-M. Themlin, Hydrogenation of the buffer-layer graphene on 6H-SiC (0001): A possible route for the engineering of graphene-based devices, Nano Res. 8 (2015) 839-850.

DOI: 10.1007/s12274-014-0566-0

Google Scholar