[1]
A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54:9 (1983) 4703–4710.
DOI: 10.1063/1.332803
Google Scholar
[2]
A.C. Eringen, Nonlocal polar elastic continua. Int. J. Eng. Sci. 10:1 (1972) 1–16.
Google Scholar
[3]
Y. Lei, T. Murmu, S. Adhikari, and M.I. Friswell, Dynamic characteristics of damped viscoelastic nonlocal Euler-Bernoulli beams. Eur. J. Mech. A/Solids 42:(2013) 125–136.
DOI: 10.1016/j.euromechsol.2013.04.006
Google Scholar
[4]
Y. Lei, S. Adhikari, and M.I. Friswell, Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams. Int. J. Eng. Sci. 66–67:(2013) 1–13.
DOI: 10.1016/j.ijengsci.2013.02.004
Google Scholar
[5]
C. Chen, S. Li, L. Dai, and C. Qian, Buckling and stability analysis of a piezoelectric viscoelastic nanobeam subjected to van der Waals forces. Commun. Nonlinear Sci. Numer. Simul. 19:5 (2014) 1626–1637.
DOI: 10.1016/j.cnsns.2013.09.017
Google Scholar
[6]
I. Pavlović, R. Pavlović, I. Ćirić, and D. Karličić, Dynamic stability of nonlocal Voigt-Kelvin viscoelastic Rayleigh beams. Appl. Math. Model. 39:22 (2015) 6941–6950.
DOI: 10.1016/j.apm.2015.02.044
Google Scholar
[7]
A.H. Ghorbanpour-Arani, A. Rastgoo, M.M. Sharafi, R. Kolahchi, and A. Ghorbanpour Arani, Nonlocal viscoelasticity based vibration of double viscoelastic piezoelectric nanobeam systems. Meccanica 51:1 (2016) 25–40.
DOI: 10.1007/s11012-014-9991-0
Google Scholar
[8]
Y. Zhang, M. Pang, and L. Fan, Analyses of transverse vibrations of axially pretensioned viscoelastic nanobeams with small size and surface effects. Phys. Lett. Sect. A Gen. At. Solid State Phys. 380:29–30 (2016) 2294–2299.
DOI: 10.1016/j.physleta.2016.05.016
Google Scholar
[9]
M. Cajic, D. Karlicic, and M. Lazarevic, Nonlocal vibration of a fractional order viscoelastic nanobeam with attached nanoparticle. Theor. Appl. Mech. 42:3 (2015) 167–190.
DOI: 10.2298/tam1503167c
Google Scholar
[10]
R. Ansari, M. Faraji Oskouie, and R. Gholami, Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory. Phys. E Low-Dimensional Syst. Nanostructures 75:(2016) 266–271.
DOI: 10.1016/j.physe.2015.09.022
Google Scholar
[11]
M.F. Oskouie, R. Ansari, and F. Sadeghi, Nonlinear vibration analysis of fractional viscoelastic Euler–Bernoulli nanobeams based on the surface stress theory. Acta Mech. Solida Sin. 30:4 (2017) 416–424.
DOI: 10.1016/j.camss.2017.07.003
Google Scholar
[12]
R. Ansari, M. Faraji Oskouie, F. Sadeghi, and M. Bazdid-Vahdati, Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory. Phys. E Low-Dimensional Syst. Nanostructures 74:(2015) 318–327.
DOI: 10.1016/j.physe.2015.07.013
Google Scholar
[13]
R. Ansari, M. Faraji Oskouie, and H. Rouhi, Studying linear and nonlinear vibrations of fractional viscoelastic Timoshenko micro-/nano-beams using the strain gradient theory. Nonlinear Dyn. 87:1 (2017) 695–711.
DOI: 10.1007/s11071-016-3069-6
Google Scholar
[14]
M.F. Oskouie and R. Ansari, Linear and nonlinear vibrations of fractional viscoelastic Timoshenko nanobeams considering surface energy effects. Appl. Math. Model. 43:(2017) 337–350.
DOI: 10.1016/j.apm.2016.11.036
Google Scholar
[15]
Q. Gong et al., Nonlinear vibration control with nanocapacitive sensor for electrostatically actuated nanobeam. J. Low Freq. Noise, Vib. Act. Control 0:0 (2017) 146134841772595.
DOI: 10.1177/1461348417725953
Google Scholar
[16]
C. Wang, C. Lin, C. Liu, and C. Hsu, Analysis of Pull-in Characteristics of Double-clamped Nanobeam Incorporating Casimir and van der Waals Effects. Sensors Mater. 30:11 (2018) 2627.
DOI: 10.18494/sam.2018.2081
Google Scholar
[17]
K. Marynowski, Non-Linear Dynamic Analysis of an Axialy Moving Viscoelastic Beam. J. Theor. Appl. Mech. (2002) 465–482.
Google Scholar
[18]
Ö. Civalek, Ç. Demir, and B. Akgöz, Static analysis of single walled carbon nanotubes (SWCNT) based on Eringen's nonlocal elasticity theory. Int. J. Eng. Appl. Sci. 1:2 (2009) 47–56.
Google Scholar
[19]
M. Arda and M. Aydogdu, Buckling of Eccentrically Loaded Carbon Nanotubes. Solid State Phenom. 267:1 (2017) 151–156.
DOI: 10.4028/www.scientific.net/ssp.267.151
Google Scholar
[20]
M. Arda and M. Aydogdu, Nonlocal Gradient Approach on Torsional Vibration of CNTs. NOISE Theory Pract. 3:3 (2017) 2–10.
Google Scholar