[1]
C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Review of selective laser melting: materials and applications, Appl. Phys. Rev. 2 (2015) 041101.
DOI: 10.1063/1.4935926
Google Scholar
[2]
W.E. King, A.T. Anderson, M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah and A.M. Rubenchik, Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges, Appl. Phys. Rev. 2 (2015) 041304.
DOI: 10.1063/1.4937809
Google Scholar
[3]
V. Markovič, O. Černašėjus, V. Prokopovič, Lazerinės miltelių sukepinimo technologijos analizė, Mechanics, material science, industrial engineering and management 5 (2013) 676-679.
DOI: 10.3846/mla.2013.113
Google Scholar
[4]
O. Balachinaitė, A. Bargelis, A. Dementjev, R. Jonušas, G. Račiukaitis, V. Sirutkaitis, Lazerinė Technologija, Vilniaus universiteto leidykla, Vilnius, (2008).
Google Scholar
[5]
S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater. 108 (2016) 36-45.
DOI: 10.1016/j.actamat.2016.02.014
Google Scholar
[6]
A.Y. Alfaify, J. Hughes, K. Ridgway, Critical evaluation of the pulsed selective laser melting process when fabricating Ti64 parts using a range of particle size distributions, Addit. Manuf. 19 (2018) 197-204.
DOI: 10.1016/j.addma.2017.12.003
Google Scholar
[7]
H.H. Alsalla, C. Smith, L. Hao, Effect of build orientation on the surface quality, microstructure and mechanical properties of selective laser melting 316L stainless steel, Rapid Prototyping J. 24 (2018) 9-17.
DOI: 10.1108/rpj-04-2016-0068
Google Scholar
[8]
B. AlMangour, D. Grzesiak, T. Borkarc, J.M. Yangd, Densification behavior, microstructural evolution, and mechanical properties of TiC/316L stainless steel nanocomposites fabricated by selective laser melting, Mater. Design 138 (2018) 119-128.
DOI: 10.1016/j.matdes.2017.10.039
Google Scholar
[9]
B. Farber, K.A. Small, C. Allen, R.J. Causton, A. Nichols, J. Simbolick, M.L. Taheri, Correlation of mechanical properties to microstructure in Inconel 718 fabricated by Direct Metal Laser Sintering, Mater. Sci. Eng. A 712 (2018) 539-547.
DOI: 10.1016/j.msea.2017.11.125
Google Scholar
[10]
J.B. Gao, X.L. Zhao, J.K. Yue, M.C. Qi, D.L. Zhang, Microstructure and mechanical properties of Ti-6Al-4V alloy samples fabricated by selective laser melting, Key Eng. Mat. 770 (2018) 179-186.
DOI: 10.4028/www.scientific.net/kem.770.179
Google Scholar
[11]
D. Dai, D. Gu, H. Zhang, J. Xiong, C. Ma, C. Hong, R. Poprawe, Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts, Opt. Laser Technol. 99 (2018) 91-100.
DOI: 10.1016/j.optlastec.2017.08.015
Google Scholar
[12]
H. Asgari, M. Mohammadi, Microstructure and mechanical properties of stainless steel CX manufactured by Direct Metal Laser Sintering, Mater. Sci. Eng. A 709 (2018) 82-89.
DOI: 10.1016/j.msea.2017.10.045
Google Scholar