Fabrication and Surface-Enhanced Raman Scattering Activities of Cross-Linked Polyvinyl Alcohol/Ag Nanofibers

Article Preview

Abstract:

This work describes the fabrication steps and surface-enhanced Raman scattering (SERS) activities of the cross-linked polyvinyl alcohol (PVA)/Ag nanofibers. The water-insoluble electrospun PVA/Ag nanofibers were achieved by post-electrospinning treatment processes. Physical crosslinking was induced by heat treatments, while chemical crosslinking took place through the reactions with glutaraldehyde (GA). Scanning electron microscopy (SEM) images have shown that cross-linked PVA/Ag nanofibers remained mostly intact after immerging in water for 30 min. The testing of SERS activities was performed on these substrates using the methylene blue (MB) molecules as tested substances. The results have shown that the PVA/Ag nanofibers can be used as SERS substrates for rapid screening of biochemical substances. The Raman enhancement factor (EF) of approximately 104 corresponding to the detection limit of 10-4 M of MB molecules was achieved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-144

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Atwater: Sci. Am. Vol. 296 (2007) p.56−63.

Google Scholar

[2] H.Y. Liang, Z.P. Li, W.Z. Wang, Y.S. Wu, H.X. Xu: Adv. Mater. Vol. 21 (2009), p.4614−4618.

Google Scholar

[3] B. Guo, G.Y. Han, M.Y. Li, S.Z. Zhao: Thin Solid Films Vol. 518 (2010) p.3228−3233.

Google Scholar

[4] M.K. Fan, G.F.S. Andrade, A.G. Brolo: Anal. Chim. Acta Vol. 693 (2011) p.7−25.

Google Scholar

[5] E. Hao, G.C. Schatz: J. Chem. Phys. Vol. 120 (2004) p.357−366.

Google Scholar

[6] M.V. Canamares, J.V. Garcia-Ramos, J.D. Gomez-Varga, C. DomingoSanchez-Cortes: Langmuir Vol. 21 (2005) p.8546−8553.

Google Scholar

[7] Y. Wang, Y. Li, S. Yang, G. Zhang, D. An, C. Wang, Q. Yang, X. Chen, X. Jing, Y. Wei: Nanotechnology Vol. 17 (2006), pp.3304-3307.

Google Scholar

[8] D. He, B. Hu, Q.F. Yao, K. Wang, S.H. Yu: ACS Nano Vol. 3 (2009) p.3993−4002.

Google Scholar

[9] C.L. Zhang, K.P. Lv, H.P. Cong, S.H. Yu: Small Vol. 8 (2012) p.648−653.

Google Scholar

[10] J.Y. Lu, C. Normal, K.A. Abboud, A. Ison: Inorg. Chem. Commun. Vol. 4 (2001), p.459–461.

Google Scholar

[11] J. Doshi, D.H. Reneker: J. Electrost. Vol. 35 (1995), pp.151-160.

Google Scholar

[12] X. Tang, and S. Alavi: Carbohydr Polym. Vol. 85 (2011), p.7–16.

Google Scholar

[13] N.T.B. Linh, and B.T. Lee: J Biomater Appl. Vol. 27 (2012), p.255–266.

Google Scholar

[14] WAWA Rahman, L.T. Sin, A.R. Rahmat, and A.A. Samad: Carbohydr Polym. Vol. 81 (2010), p.805–810.

Google Scholar

[15] F. Kayaci, and T. Uyar: Food Chem. Vol. 133 (2012), p.641–649.

Google Scholar

[16] M. Xiao, J. Chery, M.W. Frey: ACS Appl. Nano Mater. Vol. 2 (2017), pp.722-729.

Google Scholar

[17] M. S. Peresin, A.-H. Vesterinen, Y. Habibi, L-S. Johansson, J. J. Pawlak, A. A. Nevzorov, O. J. Rojas: J. APPL. POLYM. SCI Vol. 131 (2014) pp.1-12.

DOI: 10.1002/app.40334

Google Scholar

[18] V. Leung, R. Hartwell, H. Yang, A. Ghahary, F. Ko: NSTI-nanotech Vol 3 (2012) p.166–169.

Google Scholar

[19] Y. Wang, Y.-L. Hsieh: J Appl Polym Sci. Vol. 116 (2010) pp.3249-3255.

Google Scholar

[20] K.S. Rho, L. Jeong, G. Lee, B.M. Seo, Y.J. Park, S.D. Hong, S. Roh, J.J. Cho, W.H. Park, B.M. Min: J. Biomater. Vol. 27 pp.1452-1461.

Google Scholar

[21] R.R. Naujok, R.V. Duevel, R.M. Corn: Langmuir Vol. 9(7) (1993) p.1771–1774.

Google Scholar

[22] G.N. Xiao, S.Q. Man: Chem Phys Lett. Vol. 447 (2007) p.305–309.

Google Scholar

[23] E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin: J. Phys. Chem. C. Vol. 111 (2007), p.13794–13803.

DOI: 10.1021/jp0687908

Google Scholar