[1]
D. Orejon, O. Shardt, N.S.K. Gunda, T. Ikuta, K. Takahashi, Y. Takata, S.K. Mitra, Simultaneous dropwise and filmwise condensation on hydrophilic microstructured surfaces, Int. J. Heat Mass Transf. 114 (2017) 187–197.
DOI: 10.1016/j.ijheatmasstransfer.2017.06.023
Google Scholar
[2]
Z. Li, Q. Kong, X. Ma, D. Zang, X. Guan, X. Ren, Dynamic effects and adhesion of water droplet impact on hydrophobic surfaces: Bouncing or sticking, Nanoscale. 9 (2017) 8249–8255.
DOI: 10.1039/c7nr02906c
Google Scholar
[3]
M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces, Langmuir. 16 (2000) 5754–5760.
DOI: 10.1021/la991660o
Google Scholar
[4]
N. Miljkovic, E.N. Wang, Condensation heat transfer on superhydrophobic surfaces, MRS Bull. 38 (2013) 397–406.
DOI: 10.1557/mrs.2013.103
Google Scholar
[5]
D.J. Preston, D.L. Mafra, N. Miljkovic, J. Kong, E.N. Wang, Scalable graphene coatings for enhanced condensation heat transfer, Nano Lett. 15 (2015) 2902–2909.
DOI: 10.1021/nl504628s
Google Scholar
[6]
S.S.M.& A.K. Priya Varshney, Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process, Int. J. Smart Nano Mater. 7 (2016) 248–264.
DOI: 10.1080/19475411.2016.1272502
Google Scholar
[7]
J. Yang, H. Li, T. Lan, L. Peng, R. Cui, H. Yang, Preparation, characterization, and properties of fluorine-free superhydrophobic paper based on layer-by-layer assembly, Carbohydr. Polym. 178 (2017) 228–237.
DOI: 10.1016/j.carbpol.2017.09.040
Google Scholar
[8]
N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, E.N. Wang, Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces, Nano Lett. 13 (2013) 179–187.
DOI: 10.1021/nl303835d
Google Scholar
[9]
X. Chen, J.A. Weibel, S. V. Garimella, Exploiting Microscale Roughness on Hierarchical Superhydrophobic Copper Surfaces for Enhanced Dropwise Condensation, Adv. Mater. Interfaces. 2 (2015).
DOI: 10.1002/admi.201400480
Google Scholar
[10]
M. Raimondo, F. Veronesi, G. Boveri, G. Guarini, A. Motta, R. Zanoni, Superhydrophobic properties induced by sol-gel routes on copper surfaces, Appl. Surf. Sci. 422 (2017) 1022–1029.
DOI: 10.1016/j.apsusc.2017.05.257
Google Scholar
[11]
J. Li, Z. Huang, F. Wang, X. Yan, Y. Wei, One-step preparation of transparent superhydrophobic coatings using atmospheric arc discharge, Appl. Phys. Lett. 107 (2015).
DOI: 10.1063/1.4927745
Google Scholar
[12]
O.O. Van der Biest, L.J. Vandeperre, ELECTROPHORETIC DEPOSITION OF MATERIALS, Annu. Rev. Mater. Sci. 29 (1999) 327–352.
DOI: 10.1146/annurev.matsci.29.1.327
Google Scholar
[13]
A.R.B. James H. Dickerson, Electrophoretic deposition of nanometerials, 2012.
Google Scholar
[14]
M. Diba, D.W.H. Fam, A.R. Boccaccini, M.S.P. Shaffer, Electrophoretic deposition of graphene-related materials: A review of the fundamentals, Prog. Mater. Sci. 82 (2016) 83–117.
DOI: 10.1016/j.pmatsci.2016.03.002
Google Scholar
[15]
L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci. 52 (2007) 1–61.
DOI: 10.1016/j.pmatsci.2006.07.001
Google Scholar
[16]
B.P. Singh, B.K. Jena, S. Bhattacharjee, L. Besra, Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper, Surf. Coatings Technol. 232 (2013) 475–481.
DOI: 10.1016/j.surfcoat.2013.06.004
Google Scholar
[17]
S.J. An, Y. Zhu, S.H. Lee, M.D. Stoller, T. Emilsson, S. Park, A. Velamakanni, J. An, R.S. Ruoff, Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition, J. Phys. Chem. Lett. 1 (2010) 1259–1263.
DOI: 10.1021/jz100080c
Google Scholar
[18]
D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2008) 101–105.
DOI: 10.1038/nnano.2007.451
Google Scholar
[19]
S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate), J. Mater. Chem. 16 (2006) 155–158.
DOI: 10.1039/b512799h
Google Scholar
[20]
W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80 (1958) 1339.
DOI: 10.1021/ja01539a017
Google Scholar
[21]
J. Takadoum, H. Houmid Bennani, Influence of substrate roughness and coating thickness on adhesion, friction and wear of TiN films, Surf. Coatings Technol. 96 (1997) 272–282.
DOI: 10.1016/S0257-8972(97)00182-5
Google Scholar
[22]
C.-N. Yeh, K. Raidongia, J. Shao, Q.-H. Yang, J. Huang, On the origin of the stability of graphene oxide membranes in water, Nat. Chem. 7 (2015) 166–170.
DOI: 10.1038/nchem.2145
Google Scholar