Carbon Dioxide Adsorbent Preparation by Coating Amine-Functionalized Pectin onto Zeolites

Article Preview

Abstract:

Increasing carbon dioxide (CO2) levels in the atmosphere caused by excessive greenhouse gas emissions is strongly associated to global warming and climate change. This study aims to prove the feasibility of using pectin as the backbone for amine functionalization with application as coating on zeolites for carbon dioxide capture. Characterization of the solutions using FTIR and of the adsorbents using SEM demonstrated the successful modification of pectin using NH3 and TETA as alternative amine-functionalized coating for adsorbent. It has been reported for the first time that the polysaccharide pectin can be aminated and modified for CO2 capture upon coated on substrates such as zeolites. The adsorption capacities at 5% breakthrough of the adsorbents coated with the modified pectin are 2.24 mmol/CO2 g adsorbent and 2.28 mmol/CO2 g adsorbent, when coated with NH3-modified and TETA-modified pectin, respectively. It is recommended for further study to synthesize substrates with higher surface area, and optimize the formulations of the pectin modification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-184

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Rahman, F. A., Aziz, M. M. A., Saidur, R., Abu Bakar, W. A. W., Hainin, M. R., Putrajaya, R., & Hassan, N. A. (2017). Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renewable and Sustainable Energy Reviews, 71, 112-126. http://dx.doi.org/10.1016/j.rser.2017.01.011.

DOI: 10.1016/j.rser.2017.01.011

Google Scholar

[2] Lee, C. H., Hyeon, D. H., Jung, H., Chung, W., Jo, D. H., Shin, D. K., & Kim, S. H. (2015). Effects of pore structure and PEI impregnation on carbon dioxide adsorption by ZSM-5 zeolites. Journal of Industrial and Engineering Chemistry, 23, 251-256. http://dx.doi.org/10.1016/j.jiec.2014.08.025.

DOI: 10.1016/j.jiec.2014.08.025

Google Scholar

[3] Lu, W., Sculley, J. P., Yuan, D., Krishna, R., & Zhou, H. (2013). Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer Networks. The Journal of Physical Chemistry C, 117, 4057-4061. http://dx.doi.org/10.1021/jp311512q.

DOI: 10.1021/jp311512q

Google Scholar

[4] Aruldoss, D., Saigoanker, R., Savarimuthu, J. D., & Jagannathan, R. (2014). Amine-grafted zeolites-mesoporous ceramics: Synthesis and adsorption characteristics. Ceramics International, 40, 7583-7587. http://dx.doi.org/10.1016/j.ceramint.2013.11.111.

DOI: 10.1016/j.ceramint.2013.11.111

Google Scholar

[5] Unveren, E. E., Monkul, B. O., Sarioglan, S., Karademir, N., & Alper, E. (2016). Solid amine sorbents for CO2 capture by chemical adsorption: A review. Petroleum, 1-14. http://dx.doi.org/10.1016/j.petlm.2016.11.001.

DOI: 10.1016/j.petlm.2016.11.001

Google Scholar

[6] Inoue, S., Koinuma, H., & Tsuruta, T. (1971). Copolymerization of Carbon Dioxide with Optically Active Propylene Oxide. Polymer Journal, 2, 220-224.

DOI: 10.1295/polymj.2.220

Google Scholar

[7] Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540, 354-362. http://dx.doi.org/10.1038/nature21001.

DOI: 10.1038/nature21001

Google Scholar

[8] Manoranjan, N., Won, D. H., Kim, J., & Woo, S. I. (2016). Amide linked conjugated porous polymers for effective CO2 capture and separation. Journal of CO2 Utilization, 16, 486-491. http://dx.doi.org/10.1016/j.jcou.2016.05.001.

DOI: 10.1016/j.jcou.2016.05.001

Google Scholar

[9] Mishra, R. K., Sutar, P. B., Singhal, J. P., & Banthia, A. K. (2007). Graft Polymerization of Pectin with Polyacrylamide. Polymer-Plastics Technology and Engineering, 46, 1079-1085. http://dx.doi.org/10.1080/03602550701525164.

DOI: 10.1080/03602550701525164

Google Scholar

[10] Adetunji, L. R., Adekunle, A., Orsat, V., & Raghavan, V. (2017). Advances in the pectin production process using novel extraction techniques: A review. Food Hydrocolloids, 62, 239-250. http://dx.doi.org/10.1016/j.foodhyd.2016.08.015.

DOI: 10.1016/j.foodhyd.2016.08.015

Google Scholar

[11] Gonzalez, A. S., Plaza, M. G., Pis, J. J., Rubiera F., & Pevida, C. (2013). Post-combustion CO2 capture adsorbents from spent coffee grounds. Energy Procedia, 37, 134-141.

DOI: 10.1016/j.egypro.2013.05.094

Google Scholar

[12] Gonzalez, A. S., Plaza, M. G., Rubiera, F., & Pevida, C. (2013). Sustainable biomass-based carbon adsorbents for post combustion CO2 capture. Chemical Engineering Journal, 230, 465-465.

DOI: 10.1016/j.cej.2013.06.118

Google Scholar

[13] Sha, Y., Lou, J., Bai, S., Wu, D., Liu, B., & Ling, Y. (2015). Facile preparation of nitrogen-doped porous carbon from waste tobacco by a simple pre-treatment process and their application in electrochemical capacitor and CO2 capture. Materials Research Bulletin, 64, 327-332.

DOI: 10.1016/j.materresbull.2015.01.015

Google Scholar

[14] Sinitsya, A., Copikova, J., Prutyanov, V., Skoblya, S., & Machovic, V. (2000). Amidation of highly methoxylated citrus pectin with primary amines. Carbohydrate Polymers, 42, 359-368.

DOI: 10.1016/s0144-8617(99)00184-8

Google Scholar

[15] Gong, B., Wu, P., Huang, Z., Li, Y., Yang, S., Dang, Z., Ruan B., & Kang, C. (2016). Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt). Journal of Hazardous Materials, 318, 396-406.

DOI: 10.1016/j.jhazmat.2016.07.011

Google Scholar

[16] Narayanan, S., Vijaya, J.J., Sivasanker, S., Alam, M., Tamizhdurai, P., & Kennedy, L.J. (2015). Characterization and catalytic reactivity of mordenite – Investigation of selective oxidation of benzyl alcohol. Polyhedron. 89, 289-296. https://doi.org/10.1016/j.poly.2014.12.038.

DOI: 10.1016/j.poly.2014.12.038

Google Scholar