Chemical Treatment and Dispersant Characteristics of CNTs Particle and its Applications on Nanofluid

Article Preview

Abstract:

The present study aimed to evaluate simple, efficient approach to improve dispersion and electrical conductivity of nanofluid. In this study, chemical treatment and dispersion technique used to develop the dispersion and electrical conductivity of MWCNTs in aqueous. The surface of MWCNTs was modified by chemical oxidation with potassium persulfate/sodium hydroxide (K2S2O8/NaOH) to achieve more hydrophilic MWCNTs. NC (nanoCellulose) used as the dispersion for nanofluid. As a result, dispersion characteristics examined by UV-Visible spectrophotometer revealed that best dispersion of MWCNTs obtained for chemically modified MWCNTs with K2S2O8/NaOH. From the electrical conductivity measurement, chemically treated MWCNTs with dispersant showed highest conductivity 210μS/cm. With the overall results, chemical treatment and dispersion method can play significant role in improving the dispersion and electrical conductivity of MWCNTs nanofluids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-192

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ouyang, J.L. Huang, C.M. Lieber: Acc. Chem. Res. Vol. 35 (2002) p.1018–1025.

Google Scholar

[2] S. Orlanducci, V.Sessa, M.L. Terranova, G.A. Battiston, S. Battiston, R. Gergasi: Carbon, Vol. 44 (2006) pp.2839-2843.

DOI: 10.1016/j.carbon.2006.03.018

Google Scholar

[3] C. Casas, W. Li : Journal of Power Sources, Vol. 208 (2012) 74–85.

Google Scholar

[4] N.O. Chahine, N.M. Collette, C.B. Thomas, D.C. Genetos, G.G. Loots: Tissue Engineering Part A, Vol. 20 (2014) p.2305–2315.

DOI: 10.1089/ten.tea.2013.0328

Google Scholar

[5] O.G. Apul, Q. Wang, Y. Zhou, T. Karanfil: Water Research, Vol. 47 (2013) p.1648–1654.

Google Scholar

[6] N.G. Sahooa, S. Ranab, J.W. Cho, L. Li, S. Chana: Progress in Polymer Science, Vol.35 (2010) p.837–867.

Google Scholar

[7] H.W.C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker: Science, Vol. 293 (2010) p.76–79.

Google Scholar

[8] J. Wei, R. Lv, N. Guo, H. Wang, X. Bai, A. Mathkar, F. Kang, H. Zhu, K. Wang, D. Wu, R. Vajtai P.M. Ajayan: Nanotechnology, Vol. 23 (2012) pp.155601-155606.

DOI: 10.1088/0957-4484/23/15/155601

Google Scholar

[9] B. Kim W. M. Sigmund: Langmuir Vol. 20 (2004), 8239-8242.

Google Scholar

[10] S. Kim, H. Song, K. Yu, B. Tserengombo, S. Choi, H. Chung, J. Kim, H. Jeong: Int.commun. in Heat Mass Transfer Vol. 95 (2018) pp.123-131.

DOI: 10.1016/j.icheatmasstransfer.2018.05.005

Google Scholar

[11] S. Kim, B. Tserengombo, S. Choi, J. Noh, S. Huh, B. Choi, H. Chung, J. Kim, H. Jeong : Int.commun. in Heat Mass Transfer, Vol. 91 (2018) pp.95-102.

DOI: 10.1016/j.icheatmasstransfer.2017.12.011

Google Scholar

[12] A. Ghozatloo, A.M. Rashidi, M. Shariaty-Niasar: International Communications in Heat and Mass Transfer, Vol. 54 (2014) pp.1-7.

DOI: 10.1016/j.icheatmasstransfer.2014.02.013

Google Scholar

[13] V Datsyuk, M kalyva, K Papagelis, J Parthenios: Carbon, Vol 46, (2008) pp.833-840.

DOI: 10.1016/j.carbon.2008.02.012

Google Scholar

[14] Cuentas-Gallegos, A.K.; Martínez-Rosales, R.; Rincón, M.E.; Hirata, G.A. & Orozco, G.: Opt. Mater. Vol. 29 (2006) p.126–133.

DOI: 10.1016/j.optmat.2006.03.020

Google Scholar

[15] Datye, A.; Wu, K. H.; Gomes, G.; Monroy, V.; Lin, H.T.; Jozef, V. & Vanmeensel, K: Composites Science and Technology, Vol. 70 (2010) p.2086–(2092).

Google Scholar

[16] Estili, M., & Kawasaki, A.: Scripta Materialia, Vol. 58 (2008) pp.906-909.

Google Scholar

[17] Flahaut, E.; Peigney, A.; Laurent, C.; MarlieRe, C.; Chastel, F. & Rousset, A: Acta Mater., Vol. 48 (2000), p.3803–3812.

DOI: 10.1016/s1359-6454(00)00147-6

Google Scholar

[18] Gao, B.; Peng, C.; Chen, G. Z. & Puma, G.L.: Applied Catalysis B: Environmental, Vol. 85 (2008) p.17–23.

Google Scholar

[19] OK Park, T Jeevananda, NH kim, S kim, JH Lee: Scripta materialia, 2009, Vol.60 (2009) pp.551-554.

DOI: 10.1016/j.scriptamat.2008.12.005

Google Scholar

[20] K. Ramachandran, K. Kadirgama, D. Ramasamy, W. H. Azmi, F. Tarlochan: Applied Thermal Engineering, Vol. 122 (2017) pp.473-483.

DOI: 10.1016/j.applthermaleng.2017.04.049

Google Scholar

[21] K. Ramachandran, K. Kadirgama, D. Ramasamy, W. H. Azmi, F. Tarlochan, G. Kadirgama: Applied Thermal Engineering, Vol. 123 (2017) pp.1158-1165.

DOI: 10.1016/j.applthermaleng.2017.05.067

Google Scholar

[22] L. Zhang, Q.Q. Ni, Y. Fu, T. Natsuki: Applied Surface Science, Vol.255 (2009) p.7095–7099.

Google Scholar

[23] Rike Yudianti, Holia Onggo1, Sudirman, Yukie Saito, Tadahisa Iwata, Jun-ichi Azuma: The Open Materials Science Journal, Vol. 5 (2011) pp.242-247.

Google Scholar

[24] A. Nasiri, M. Shariaty-Niasar, A.M. Rashidi, R. Khodafarin: International Journal of Heat and Mass Transfer, Vol. 55 (2012) p.1529–1535.

DOI: 10.1016/j.ijheatmasstransfer.2011.11.004

Google Scholar

[25] J.W. Shim, S.J. Park, S.K. Ryu: Carbon, Vol. 39 (2001) p.1635.

Google Scholar

[26] A. Nasiri, M. Shariaty-Niasar, A.M. Rashidi, R. Khodafarin: Inter. Jour. of Heat and Mass Trans., Vol. 55 (2012) p.1529.

DOI: 10.1016/j.ijheatmasstransfer.2011.11.004

Google Scholar

[27] Yadav, S. K., Mahapatra, S. S., Yoo, H. J., & Cho, J. W: Nanoscale research letters, Vol. 6 (2011) p.122.

Google Scholar

[28] Wei, J., Lv, R., Guo, N., Wang, H., Bai, X., Mathkar, A., ... & Vajtai, R: Nanotechnology, Vol. 23 (2012) p.155601.

Google Scholar

[29] Gupta, V. K., Agarwal, S., & Saleh, T. A: Journal of hazardous materials, ,Vol. 185 (2011) pp.17-23.

Google Scholar

[30] H.J. Yoo, K.H. Kim, S.K. Yadav, J.W. Cho: Composites Science and Technology, Vol.72 (2012) p.1834–1840.

Google Scholar