Effect of Atmospheric Pressure Plasma Treatment of Glass Fibers on the Composite Strength of Endless Fiber-Reinforced Injection Molded Components

Article Preview

Abstract:

Injection molding is an efficient manufacturing process for short-fiber reinforced plastic components and is used for the production of semi-structural or geometrically complex components. To improve stiffness and strength, continuous fibers can be locally integrated inside the part during manufacturing. A local integration of fibers is not feasible for high output manufacturing processes but can be achieved by direct impregnation of endless fibers in the injection molding process. It is a challenging option to integrate endless fibers in injection molded parts in means of fiber position and infiltration. Thereby, the knowledge of the flow process of the injected melt must be precisely understood in means of orientation of the fibers to achieve a correct position. In previous works the process parameters for the impregnation of fibers and the composite behavior of untreated fibers were investigated. As a result, the surface pretreatment of the fibers can have an important effect on the composite and the direct impregnation of fibers. An important focus of this work is the pretreatment of glass fibers by plasma. The influence of the plasma parameters resulting on the adhesion properties between fiber and matrix and thus the bond strength of the composite are evaluated and measures for further adhesive property improvement are shown.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Vishnuvarthanan, M., Panda, R., Ilangovan, S.: Optimization of Injection Molding Cycle Time Using Moldflow Analysis. Middle-East Journal of Scientific Research 13, 7, S. 944–946, (2012).

Google Scholar

[2] Schemme, M.: Langfaserverstärkte Thermoplaste-Status und Perspektiven. Thermoplastische Faserverbundkunststoffe-Werkstoff/Verarbeitung/Simulation/Anwendung. Erlangen: Lehrstuhl für Kunststofftechnik, Universität Erlangen-Nürnberg, S. 1–33 (2011).

Google Scholar

[3] Roch, A., Huber, T.: Der Spritzgießer kann auch Leichtbau. Industrie Anzeiger (2016).

Google Scholar

[4] Tröltzsch, J., Roth, I.: Herstellungstechnologie zur partiellen Faserhalbzeugverstärkung von thermoplastischen Spritzgussbauteilen - PAFATHERM-Technologie. Entwicklungen zur partiellen Verstärkung von thermoplastischen Spritzgießbauteilen. Abschlussseminar (2011).

Google Scholar

[5] Gebken, T., Kühn, M., Dröder, K.: Integration of endless fibres in the injection moulding process. In: SAMPE Europe Conference (2017).

Google Scholar

[6] Coulter, J. P., Guceri, S. I.: Resin Impregnation During the Manufacturing of Composite Materials Subject to Prescribed Injection Rate. Journal of reinforced Plastics and Composites 7, 3, S. 200–219, (1988).

DOI: 10.1177/073168448800700301

Google Scholar

[7] Amico, S., Lekakou, C.: An experimental study of the permeability and capillary pressure in resin-transfer moulding. Composites Science and Technology 61, 13, S. 1945–1959, (2001).

DOI: 10.1016/s0266-3538(01)00104-x

Google Scholar

[8] van der Auwera, R., Gebken, T., Fürst, A., Steinberg, J., Kühn, M., Wöstmann, F.-J., Busse, M.: Development of New Process Chains in the Open Hybrid LabFactory for Hybrid Integral Components for Automotive Mass Production. Euro Hybrid Materials and Structures (2016).

Google Scholar

[9] Gebken, T., Kühn, M., et al.: Prozessentwicklung für den hybriden Leichtbau am Beispiel einer endlos-faserverstärkten Aluminium-FVK-Struktur. In: Symposium Hybrider Leichtbau (2016).

Google Scholar

[10] Gebken, T., Kühn, M., Demes, M., Müller, A., Dröder, K.: Integral Manufacturing of Plastic-Metal Hybrids Consisting of Endless Fiber Reinforcement Using Injection Molding (2018).

DOI: 10.1016/j.matpr.2019.02.022

Google Scholar

[11] Cech, V., Prikryl, R., Balkova, R., Grycova, A., Vanek, J.: Plasma surface treatment and modification of glass fibers. Composites Part A: Applied Science and Manufacturing 33, 10, S. 1367–1372, (2002).

DOI: 10.1016/s1359-835x(02)00149-5

Google Scholar

[12] Shishoo, R.: Plasma technologies for textiles. Elsevier (2007).

Google Scholar

[13] Ermel, V., Kurrat, M.: Plasmabehandlung von Glasfasergelege. Vakuum in Forschung und Praxis 21, 2, S. 27–31 (2009).

DOI: 10.1002/vipr.200900380

Google Scholar