Highly-Organized One-Dimensional Copper-Doped Titanium Dioxide Nanotubes for Photoelectrocatalytic Degradation of Acid Orange 52

Article Preview

Abstract:

Highly-organized one-dimensional arrays of copper-doped titanium dioxide nanotubes (Cu-TiNTs) were synthesized in a one-pot approach by double anodization of titanium sheets. Field-emission scanning electron microscopy showed that Cu-TiNTs have an average inner diameter of 52.13 nm, a wall thickness of 14.28 nm, and a tube length of 0.6401 μm. Fourier-transform infrared spectroscopy confirmed the presence of characteristic O-Ti-O bond of TiO2. X-ray fluorescence spectroscopy confirmed copper-doping with an average dopant loading of 0.0248%. Even at this low dopant loading, Cu-TiNTs were shown to be photo-active in degrading Acid Orange 52 (AO 52) under UV light illumination. The kinetic profiles of AO 52 photoelectrochemical degradation were best described by the pseudo-first-order kinetic model (R2 ≥ 0.991) with kinetic constants 9.42 x 10-3 min-1 for Cu-TiNTs as compared to 6.04 x 10-3 min-1 for pristine TiNTs. Overall, doping pristine TiNTs with Cu was shown to enhance its photoelectrocatalytic properties in degrading textile dyes such as AO 52.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

285-291

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Bizani, K. Fytianos, I. Poulios, and V. Tsiridis: J. Hazard. Mater. Vol. 136 (2006), pp.85-94.

Google Scholar

[2] F. Çiner and Ö. Gökkuş: Clean - Soil, Air, Water. Vol. 41, 1 (2013), pp.80-85.

Google Scholar

[3] Q. Li, Q. Zhang, H. Cui, L. Ding, Z. Wei, and J. Zhai: Chem. Eng. J. Vol. 228 (2013), pp.806-814.

Google Scholar

[4] V. K. Saharan, A. B. Pandit, P. S. Satish Kumar, and S. Anandan: Ind. Eng. Chem. Res. Vol. 51, 4 (2012), pp.1981-1989.

Google Scholar

[5] T. Liu, K. Wang, S. Song, A. Brouzgou, P. Tsiakaras, and Y. Wang: Electrochim. Acta Vol. 194 (2016), pp.228-238.

Google Scholar

[6] C. Espinoza, J. Romero, L. Villegas, L. Cornejo-ponce, and R. Salazar: J. Hazard. Mater. Vol. 319 (2016), pp.24-33.

Google Scholar

[7] O. M. Ama and O. A. Arotiba: J. Electroanal. Chem. Vol. 803 (2017), pp.157-164.

Google Scholar

[8] D. Cao, Y. Wang, and X. Zhao: Curr. Opin. Green Sustain Chem. Vol. 6 (2017) pp.78-84.

Google Scholar

[9] S. Li, G. Zhang, D. Guo, L. Yu, and W. Zhang: J. Phys. Chem. Vol. 113 (2009), pp.12759-12765.

Google Scholar

[10] Y.-C. Nah, I. Paramasivam, and P. Schmuki; ChemPhysChem Vol. 11, 13 (2010), pp.2698-2713.

Google Scholar

[11] Y. Matsumoto et al.: J. Ceram. Soc. Japan Vol. 2, 1 (2010), pp.993-996.

Google Scholar

[12] F. Huang, A. Yan, and H. Zhao in: Semiconductor Photocatalysis - Materials, Mechanisms, and Applications, edited by Wenbin Cao, chapter, 2, InTechOpen (2013).

Google Scholar

[13] R. Daghrir, P. Drogui, and D. Robert: Ind. Eng. Chem. Res. Vol. 52, 10 (2013), pp.3581-3599.

DOI: 10.1021/ie303468t

Google Scholar

[14] Y. Su and Y. Deng: Appl. Surf. Sci. Vol. 257, 23 (2011), pp.9791-9795.

Google Scholar

[15] A. N. Banerjee, N. Hamnabard, and S. W. Joo: Ceram. Int. Vol. 42, 10 (2016), pp.12010-12026.

Google Scholar

[16] B. Liao, X. Y. Wu, H. Liang, X. Zhang, and A. D. Liu: Chinese Phys. Lett. Vol. 27, 7 (2010), pp.1-4.

Google Scholar

[17] H. Li, X. Duan, G. Liu, and L. Li: Mater. Res. Bull. Vol. 43, 8-9 (2008), pp.1971-1981.

Google Scholar

[18] O. Zuas and H. Budiman: Nano-Micro Lett. Vol. 5, 1 (2013), pp.26-33.

Google Scholar

[19] Q. Zeng, M. Xi, W. Xu, and X. Li: Mater. Corros. Vol. 64, 11 (2013), pp.32-34.

Google Scholar

[20] G. D. Sulka, J. Kapusta-Kołodziej, A. Brzózka, and M. Jaskuła: Electrochim. Acta Vol. 104 (2013), pp.526-535.

DOI: 10.1016/j.electacta.2012.12.121

Google Scholar

[21] K. Lee, D. Kim, and P. Schmuki: Chem. Commun. Vol. 2 (2011), pp.5789-5791.

Google Scholar

[22] M. V Diamanti, M. P. Pedeferri, and P. Milano: The Anodic Oxidation of Titanium and Its Alloys. (Elsevier Inc., 2016).

Google Scholar

[23] D. Regonini, A. Satka, A. Jaroenworaluck, D. W. E. Allsopp, C. R. Bowen, and R. Stevens: Electrochim. Acta Vol. 74 (2012), pp.244-253.

DOI: 10.1016/j.electacta.2012.04.076

Google Scholar

[24] M. M. Momeni, Y. Ghayeb, and Z. Ghonchegi: Ceram. Int. Vol. 41, 7 (2015), pp.8735-8741.

Google Scholar

[25] P. Gross, S. N. Pronkin, T. Cottineau, B. Nicolas, N. Keller, and E. R. Savinova: J. Mater. Chem. A Mater. energy Sustain. (2013), pp.2151-2160.

Google Scholar

[26] C. T. Rueden et al.: BMC Bioinformatics Vol. 18, 1 (2017), pp.1-26.

Google Scholar

[27] X. Zhou, N. T. Nguyen, S. Özkan, and P. Schmuki: Electrochem. Commun. Vol. 46 (2014), pp.157-162.

Google Scholar

[28] J. V. Pasikhani, N. Gilani, and A. E. Pirbazari: Nano-Structures and Nano-Objects Vol. 8 (2016), pp.7-14.

Google Scholar

[29] G. D. Sulka, J. Kapusta-Kołodziej, A. Brzózka, and M. Jaskuła: Electrochim. Acta Vol. 55, 14 (2010), pp.4359-4367.

DOI: 10.1016/j.electacta.2009.12.053

Google Scholar

[30] J. Chen, H. Wang, X. Wei, and L. Zhu: Mater. Res. Bull. Vol. 47, 11 (2012), pp.3747-3752.

Google Scholar

[31] Y. Li et al: J. Electroanal. Chem. Vol. 688 (2013), pp.228-231.

Google Scholar

[32] T. N. T. Le, N. Q. T. Ton, V. M. Tran, N. D. Nam, and T. H. T. Vu: J. Nanomater Vol. 2017 (2017), pp.1-7.

Google Scholar

[33] H. Wang et al.: React. Kinet. Mech. Catal. Vol. 106, 2 (2012), pp.341-353.

Google Scholar

[34] T. Hoseinzadeh, Z. Ghorannevis, M. Ghoranneviss, A. H. Sari, and M. K. Salem: J. Theor. Apply. Phys. Vol. 11, 3 (2017), pp.243-248.

Google Scholar