Effect of Ball Milling Process on Electrochemical Properties of Copper Hexacyanoferrate Active Material for Calcium-Ion Batteries

Article Preview

Abstract:

This study investigates the electrochemical properties of ball-milled copper hexacyanoferrate (CuHCF), a Prussian blue analogue, as a cathode material in aqueous calcium-ion batteries (CIBs). X-ray diffraction analysis confirmed that the ball milling process did not destroy the crystal structure of the CuHCF active material. The general grain size and crystal surface of the synthesized CuHCF active materials were confirmed from the scanning electron microscopy (SEM) images. The electrochemical test results revealed that prolonged ball milling improved the charge/discharge capacity in the initial cycle. After 200 cycles, structural collapse of the CuHCF electrode occurred, as observed by SEM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-114

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Nie, L. Shen, F. Zhang, L. Chen, H. Deng, and X. Zhang, Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for lithium-ion batteries, CrystEngComm. 14 (2012) 4284−4288.

DOI: 10.1039/c2ce25094b

Google Scholar

[2] L. Shen, E. Uchaker, X. Zhang, and G. Cao, Hydrogenated Li4Ti5O12 Nanowire Arrays for High Rate Lithium Ion Batteries, Adv. Mater. 24 (2012) 6502−6506.

DOI: 10.1002/adma.201203151

Google Scholar

[3] J. Popovic, R. D. Cakan, J. Tornow, M. Morcrette, D. S. Su, R. Schlogl, M. Antonietti, and M.-M. Titirici, LiFePO4 Mesocrystals for Lithium‐Ion Batteries, Small. 7 (2011) 1127−1135.

DOI: 10.1002/smll.201002000

Google Scholar

[4] R. E. Doe, R. Han, J. Hwang, A. J. Gmitter, I. Shterenberg, H. D. Yoo, N. Pour, and D. Aurbach, Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries, Chem. Commun. 50 (2014) 243−245.

DOI: 10.1039/c3cc47896c

Google Scholar

[5] H. D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, and D. Aurbach, Mg rechargeable batteries: an on-going challenge, Energy Environ. Sci. 6 (2013) 2265−2279.

DOI: 10.1039/c3ee40871j

Google Scholar

[6] N. Wu, Z. Z. Yang, H.-R. Yao, Y. X. Yin, L. Gu, and Y. G. Guo, Improving the Electrochemical Performance of the Li4Ti5O12 Electrode in a Rechargeable Magnesium Battery by Lithium–Magnesium Co‐Intercalation, Angew. Chem. 54 (2015) 5757−5761.

DOI: 10.1002/anie.201501005

Google Scholar

[7] T. Tojo, Y. Sugiura, R. Inanda, Y. Sakurai, Reversible Calcium Ion Batteries Using a Dehydrated Prussian Blue Analogue Cathode, Electrochim. Acta. 207 (2016) 22−27.

DOI: 10.1016/j.electacta.2016.04.159

Google Scholar

[8] A. Ponrouch, C. Frontera, F. Barde, and M.R. Palacin, Towards a calcium-based rechargeable battery, Nat. Mater. 15 (2016) 169−172.

DOI: 10.1038/nmat4462

Google Scholar

[9] T. Ouchi, H. Kim, B.L. Spatocco, and D.R. Sadoway, Calcium-based multi-element chemistry for grid-scale electrochemical energy storage, Nat. Commun. 7 (2016) 10999−11003.

DOI: 10.1038/ncomms10999

Google Scholar

[10] J. Muldoon, C. B. Bucur, T. Gregory, Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond, Chem. Rev. 114 (2014) 11683−11720.

DOI: 10.1021/cr500049y

Google Scholar

[11] Y. Murata, R. Minami, S. Takada, K. Aoyanagi, T. Tojo, R. Inada, and Y. Sakurai, A fundamental study on carbon composites of FeF3·0.33H2O as open-framework cathode materials for calcium-ion batteries, AIP Conference Proceedings. 1807 (2017) 20005−20012.

DOI: 10.1063/1.4974787

Google Scholar

[12] A.L. Lipson, B. Pan, S.H. Lapidus, C. Liao, J.T. Vaughey, and B.J. Ingram, Rechargeable Ca-Ion Batteries: A New Energy Storage System, Chem. Mater. 27 (2015) 8442−8447.

DOI: 10.1021/acs.chemmater.5b04027

Google Scholar

[13] E. Levi, Y. Gofer, and D. Aurbach, On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials, Chem. Mater. 22 (2010) 860−868.

DOI: 10.1021/cm9016497

Google Scholar

[14] Y. Liang, R. Feng, S. Yang, H. Ma, J. Liang, and J. Chen, Rechargeable Mg Batteries with Graphene‐like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode, Adv. Mater. 23 (2011) 640−643.

DOI: 10.1002/adma.201003560

Google Scholar

[15] D. Aurbach, G. S. Suresh, E. Levi, A. Mitelman, O. Mizrahi, O. Chusid, and M. Brunelli, Progress in Rechargeable Magnesium Battery Technology, Adv. Mater. 19 (2007) 4260−4267.

DOI: 10.1002/adma.200701495

Google Scholar

[16] J. Song, M. Noked, E. Gillette, J. Duay, G. Rubloff, and S. B. Lee, Activation of a MnO2 cathode by water-stimulated Mg2+ insertion for a magnesium ion battery, Phys. Chem. Chem. 17 (2015) 5256−5264.

DOI: 10.1039/c4cp05591h

Google Scholar

[17] C. H. Lee and S. K. Jeong, A Novel Superconcentrated Aqueous Electrolyte to Improve the Electrochemical Performance of Calcium-ion Batteries, Chemistry Letters. 45 (2016) 1447−1449.

DOI: 10.1246/cl.160769

Google Scholar

[18] C.H. Lee, S-K. Jeong, Modulating the hydration number of calcium ions by varying the electrolyte concentration: Electrochemical performance in a Prussian blue electrode/aqueous electrolyte system for calcium-ion batteries, Electrochimica Acta. 265 (2018) 430−436.

DOI: 10.1016/j.electacta.2018.01.172

Google Scholar

[19] R. Y. Wang, B. Shyam, K. H. Stone, J. N. Weker, M. Pasta, H. W. Lee, M. F. Toney, and Y. Cui, Reversible Multivalent (Monovalent, Divalent, Trivalent) Ion Insertion in Open Framework Materials, Adv. Eng. Mater. 5 (2015) 1401869−1401878.

DOI: 10.1002/aenm.201401869

Google Scholar

[20] Z. Jia, B. Wang, and Y. Wang, Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries, Materials Chemistry and Physics. 149−150 (2015) 601−606.

DOI: 10.1016/j.matchemphys.2014.11.014

Google Scholar