[1]
P. Nie, L. Shen, F. Zhang, L. Chen, H. Deng, and X. Zhang, Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for lithium-ion batteries, CrystEngComm. 14 (2012) 4284−4288.
DOI: 10.1039/c2ce25094b
Google Scholar
[2]
L. Shen, E. Uchaker, X. Zhang, and G. Cao, Hydrogenated Li4Ti5O12 Nanowire Arrays for High Rate Lithium Ion Batteries, Adv. Mater. 24 (2012) 6502−6506.
DOI: 10.1002/adma.201203151
Google Scholar
[3]
J. Popovic, R. D. Cakan, J. Tornow, M. Morcrette, D. S. Su, R. Schlogl, M. Antonietti, and M.-M. Titirici, LiFePO4 Mesocrystals for Lithium‐Ion Batteries, Small. 7 (2011) 1127−1135.
DOI: 10.1002/smll.201002000
Google Scholar
[4]
R. E. Doe, R. Han, J. Hwang, A. J. Gmitter, I. Shterenberg, H. D. Yoo, N. Pour, and D. Aurbach, Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries, Chem. Commun. 50 (2014) 243−245.
DOI: 10.1039/c3cc47896c
Google Scholar
[5]
H. D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, and D. Aurbach, Mg rechargeable batteries: an on-going challenge, Energy Environ. Sci. 6 (2013) 2265−2279.
DOI: 10.1039/c3ee40871j
Google Scholar
[6]
N. Wu, Z. Z. Yang, H.-R. Yao, Y. X. Yin, L. Gu, and Y. G. Guo, Improving the Electrochemical Performance of the Li4Ti5O12 Electrode in a Rechargeable Magnesium Battery by Lithium–Magnesium Co‐Intercalation, Angew. Chem. 54 (2015) 5757−5761.
DOI: 10.1002/anie.201501005
Google Scholar
[7]
T. Tojo, Y. Sugiura, R. Inanda, Y. Sakurai, Reversible Calcium Ion Batteries Using a Dehydrated Prussian Blue Analogue Cathode, Electrochim. Acta. 207 (2016) 22−27.
DOI: 10.1016/j.electacta.2016.04.159
Google Scholar
[8]
A. Ponrouch, C. Frontera, F. Barde, and M.R. Palacin, Towards a calcium-based rechargeable battery, Nat. Mater. 15 (2016) 169−172.
DOI: 10.1038/nmat4462
Google Scholar
[9]
T. Ouchi, H. Kim, B.L. Spatocco, and D.R. Sadoway, Calcium-based multi-element chemistry for grid-scale electrochemical energy storage, Nat. Commun. 7 (2016) 10999−11003.
DOI: 10.1038/ncomms10999
Google Scholar
[10]
J. Muldoon, C. B. Bucur, T. Gregory, Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond, Chem. Rev. 114 (2014) 11683−11720.
DOI: 10.1021/cr500049y
Google Scholar
[11]
Y. Murata, R. Minami, S. Takada, K. Aoyanagi, T. Tojo, R. Inada, and Y. Sakurai, A fundamental study on carbon composites of FeF3·0.33H2O as open-framework cathode materials for calcium-ion batteries, AIP Conference Proceedings. 1807 (2017) 20005−20012.
DOI: 10.1063/1.4974787
Google Scholar
[12]
A.L. Lipson, B. Pan, S.H. Lapidus, C. Liao, J.T. Vaughey, and B.J. Ingram, Rechargeable Ca-Ion Batteries: A New Energy Storage System, Chem. Mater. 27 (2015) 8442−8447.
DOI: 10.1021/acs.chemmater.5b04027
Google Scholar
[13]
E. Levi, Y. Gofer, and D. Aurbach, On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials, Chem. Mater. 22 (2010) 860−868.
DOI: 10.1021/cm9016497
Google Scholar
[14]
Y. Liang, R. Feng, S. Yang, H. Ma, J. Liang, and J. Chen, Rechargeable Mg Batteries with Graphene‐like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode, Adv. Mater. 23 (2011) 640−643.
DOI: 10.1002/adma.201003560
Google Scholar
[15]
D. Aurbach, G. S. Suresh, E. Levi, A. Mitelman, O. Mizrahi, O. Chusid, and M. Brunelli, Progress in Rechargeable Magnesium Battery Technology, Adv. Mater. 19 (2007) 4260−4267.
DOI: 10.1002/adma.200701495
Google Scholar
[16]
J. Song, M. Noked, E. Gillette, J. Duay, G. Rubloff, and S. B. Lee, Activation of a MnO2 cathode by water-stimulated Mg2+ insertion for a magnesium ion battery, Phys. Chem. Chem. 17 (2015) 5256−5264.
DOI: 10.1039/c4cp05591h
Google Scholar
[17]
C. H. Lee and S. K. Jeong, A Novel Superconcentrated Aqueous Electrolyte to Improve the Electrochemical Performance of Calcium-ion Batteries, Chemistry Letters. 45 (2016) 1447−1449.
DOI: 10.1246/cl.160769
Google Scholar
[18]
C.H. Lee, S-K. Jeong, Modulating the hydration number of calcium ions by varying the electrolyte concentration: Electrochemical performance in a Prussian blue electrode/aqueous electrolyte system for calcium-ion batteries, Electrochimica Acta. 265 (2018) 430−436.
DOI: 10.1016/j.electacta.2018.01.172
Google Scholar
[19]
R. Y. Wang, B. Shyam, K. H. Stone, J. N. Weker, M. Pasta, H. W. Lee, M. F. Toney, and Y. Cui, Reversible Multivalent (Monovalent, Divalent, Trivalent) Ion Insertion in Open Framework Materials, Adv. Eng. Mater. 5 (2015) 1401869−1401878.
DOI: 10.1002/aenm.201401869
Google Scholar
[20]
Z. Jia, B. Wang, and Y. Wang, Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries, Materials Chemistry and Physics. 149−150 (2015) 601−606.
DOI: 10.1016/j.matchemphys.2014.11.014
Google Scholar