Effects of Natural Clay on Ionic Conductivity, Crystallinity and Thermal Properties of PEO-LiCF3SO3-Natural Clay as Solid Polymer Electrolyte Nanocomposites

Article Preview

Abstract:

The polymer nanocomposites of PEO-LiCF3SO3 based solid polymer electrolyte were prepared using two kinds of natural clays, which are halloysite nanotube (HNT) and montmorillonite (MMT) nanoparticle. Different contents (0, 1, 5 and 10wt %) of halloysite nanotube (HNT) and montmorillonite (MMT) nanoparticle were explored. Solid polymer electrolyte nanocomposite film was prepared by solution casting method. The ionic conductivity, crystallinity and thermal properties of solid polymer electrolyte membranes were studied by impedance spectroscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC), respectively. It was found that HNT provided higher ionic conductivity for solid polymer electrolyte nanocomposite than what MMT did. The highest ionic conductivity at room temperature was found at 5% HNT as 2.068 x 10-5 S.cm-1. The ion-polymer interactions between PEO-LiCF3SO3 and natural clay nanoparticle were investigated by using Fourier transform infrared (FTIR) spectra. The PEO-LiCF3SO3-5%HNT showed good oxidative stability than PEO-LiCF3SO3 composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

98-103

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.W. Zewde, G.A. Elia, S. Admassie, J. Zimmermann, M. Hagemann, C.S. Isfort, B. Scrosati, J. Hassoun: Solid State Ion Vol.268 (2014), p.174–178.

DOI: 10.1016/j.ssi.2014.10.030

Google Scholar

[2] J. Suk, Y.H. Lee, D.Y. Kim, D.W. Kim, S.Y. Cho, J.M. Kim, Y. Kang: J. Power Sources Vol.334 (2016), p.154–161.

Google Scholar

[3] J. Mohanta, D.K. Padhi, S. Si: J. Appl. Polym. Sci Vol.135 (2018), p.46336.

Google Scholar

[4] A.S. Pandian, X.C. Chen, J. Chen, B.S. Lokitz, R.E. Ruther, G. Yang, K. Lou, J. Nanda, F.M. Delnick, N.J. Dudney: J. Power Sources Vol. 390 (2018), p.153–164.

DOI: 10.1016/j.jpowsour.2018.04.006

Google Scholar

[5] A.R. Polu, H.-W. Rhee: J. Ind. Eng. Chem Vol.31 (2015), p.323–329.

Google Scholar

[6] S. Choudhary, R.J. Sengwa: Ionics Vol.18 (2012), p.379–384.

Google Scholar

[7] M. Abreha, A.R. Subrahmanyam, J. Siva Kumar: Chem. Phys. Lett Vol.658 (2016), p.240–247.

Google Scholar

[8] S. Cho, W. Cha, H. Park, J.-M. Lee, E.-B. Kim, H.-W. Rhee, Z. Jiang, J. Strzalka, H. Kim: Synth. Met Vol.177 (2013), p.110–113.

Google Scholar

[9] W. Wang, P. Alexandridis: Polymers Vol.8 (2016), p.387.

Google Scholar

[10] H. Zhang, C. Liu, L. Zheng, F. Xu, W. Feng, H. Li, X. Huang, M. Armand, J. Nie, Z. Zhou: Electrochimica Acta Vol.133 (2014), p.529–538.

DOI: 10.1016/j.electacta.2014.04.099

Google Scholar

[11] Y. Zhao, C. Wu, G. Peng, X. Chen, X. Yao, Y. Bai, F. Wu, S. Chen, X. Xu: J. Power Sources Vol.301 (2016), p.47–53.

Google Scholar

[12] M. Liu, Z. Jia, D. Jia, C. Zhou: Prog. Polym Sci Vol.39 (2014), p.1498–1525.

Google Scholar

[13] T. Winie, F. Muhammad, N. Hazwani: Adv. Mater. Res Vol.545 (2012), p.317–320.

Google Scholar

[14] M.R. Johan, O.H. Shy, S. Ibrahim, S.M. Mohd Yassin, T.Y. Hui: Solid State Ion Vol.196 (2011), p.41–47.

Google Scholar

[15] A.R. Polu, H.-W. Rhee: J. Ind. Eng. Chem Vol.37 (2016), p.347–353.

Google Scholar

[16] R.J. Sengwa, P. Dhatarwal, S. Choudhary: Solid State Ion Vol.324 (2018), p.247–259.

Google Scholar

[17] A.B. Reddy, B. Manjula, T. Jayaramudu, E.R. Sadiku, P. Anand Babu, S. Periyar Selvam: Nano-Micro Lett Vol.8 (2016), p.260–269.

DOI: 10.1007/s40820-016-0086-4

Google Scholar

[18] O. Sheng, C. Jin, J. Luo, H. Yuan, H. Huang, Y. Gan, J. Zhang, Y. Xia, C. Liang, W. Zhang, X. Tao: Nano Lett Vol.18 (2018), p.3104–3112.

Google Scholar

[19] L.N. Carli, J.S. Crespo, R.S. Mauler: Compos. Part Appl. Sci. Manuf Vol.42 (2011), p.1601–1608.

Google Scholar

[20] A.R. Polu, H.-W. Rhee, D.K. Kim: J. Mater. Sci. Mater. Electron Vol.26 (2015), p.8548–8554.

Google Scholar

[21] M. Amangah, M. Salami-Kalajahi, H. Roghani-Mamaqani: Diam. Relat. Mater Vol.83 (2018), p.177–183.

Google Scholar

[22] D. Saikia, Y.-H. Chen, Y.-C. Pan, J. Fang, L.Y. Tsai, G. T. K. Fey, H.-M. Kao: J Mater Chem Vol.21 (2011), p.10542–10551.

Google Scholar

[23] Y. Tong, Y. Xu, D. Chen, Y. Xie, L. Chen, M. Que, Y. Hou: RSC Adv Vol.7 (2017), p.22728–22734.

DOI: 10.1039/c7ra00112f

Google Scholar