A Study on the Prediction of Strength of Trimodal Composites

Article Preview

Abstract:

Particle-reinforced trimodal composites, which typically consist of three constituent phases where at least one phase forms itself a composite with ceramic particles, feature a length-scale-dependent strengthening. Joshi and Ramesh [1] presented a secant Mori–Tanaka method to describe the strength of trimodal composites. They, however, seem to have used excessively high strength by mismatch in coefficients of thermal expansion between ultrafine-grained 5083 aluminum and B4C particles. Since the ultrafine-grained 5083 aluminum features high strength, an additional enhancement of strength by this kind of thermoelastic mismatch between matrix and particle may hardly occur. Using finite-element methods with strain-gradient plasticity, this problem is examined computationally and an enhanced procedure of strength prediction for trimodal composites is suggested.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-80

Citation:

Online since:

May 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. P. Joshi and K. T. Ramesh: Scripta Materialia, Vol. 57 (2007), p.877. H. Zhang, J. Ye, S. Joshi, J. Schoenung, E. Chin, G. Gazonas and K. Ramesh: Advanced Engineering Materials, Vol. 9 (2007), p.355.Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119.

DOI: 10.1002/adem.200700015

Google Scholar

[2] S. P. Joshi and K. T. Ramesh: Scripta Materialia, Vol. 57 (2007), p.877.M.A. Green: High Efficiency Silicon Solar Cells (Trans Tech Publications, Switzerland 1987).

Google Scholar

[32] H. Zhang, J. Ye, S. Joshi, J. Schoenung, E. Chin, G. Gazonas and K. Ramesh: Advanced Engineering Materials, Vol. 9 (2007), p. 355Y. Li, Y. H. Zhao, V. Ortalan, W. Liu, Z. H. Zhang, R. G. Vogt, N. D. Browning, E. J. Lavernia and J. M. Schoenung: Materials Science and Engineering: A, Vol. 527 (2009), p. 305Y. Mishing, in: Diffusion Processes in Advanced Technological Materials, edtied by D. Gupta Noyes Publications/William Andrew Publising, Norwich, NY (2004), in press.

DOI: 10.1016/j.msea.2009.07.067

Google Scholar

[3] Y. Li, Y. H. Zhao, V. Ortalan, W. Liu, Z. H. Zhang, R. G. Vogt, N. D. Browning, E. J. Lavernia and J. M. Schoenung: Materials Science and Engineering: A, Vol. 527 (2009), p.305.

DOI: 10.1016/j.msea.2009.07.067

Google Scholar

[4] H. Yang, T. D. Topping, K. Wehage, L. Jiang, E. J. Lavernia, J. M. Schoenung: Materials Science and Engineering: A, Vol. 616, (2014) p.35.

Google Scholar

[5] A. Alizadeh, M. Eslami and M. H. Babaee: Transactions of the Indian Institute of Metals, Vol. 71 (2018), p.2325.

Google Scholar

[6] G.J. Weng: Journal of the Mechanics and Physics of Solids, Vol. 38 (1990), p.419.

Google Scholar

[674] R. J. Arsenault and N. Shi: Materials Science and Engineering, Vol. 81 (1986), p.175.

Google Scholar

[785] S. Shibata, M. Taya, T Mori and T. Mura: Acta Metallurgica et Materialia, Vol. 40 (1992), p.3141.

DOI: 10.1016/0956-7151(92)90477-v

Google Scholar

[4896] M. S. Park, Y. S. Suh and S. Song: Finite elements in analysis and design, Vol. 59 (2012), p.35.

Google Scholar

Y. S. Suh, M. S. Park and S. Song: Journal of Mechanical Science and Technology, Vo1. 27 (2013), p.1071. 108[7] L. …….1057.L. H. Dai, Z. Ling and L. Bai: Composites Science and Technology, Vol. 61 (2001), p.1057.G. Henkelman, G.Johannesson and H. Jónsson, in: Theoretical Methods in Condencsed Phase Chemistry, edited by S.D. Schwartz, volume 5 of Progress in Theoretical Chemistry and Physics, chapter, 10, Kluwer Academic Publishers (2000).

Google Scholar

[58] L. …….1057. Y. S. Suh, M. S. Park and S. Song: Journal of Mechanical Science and Technology, Vo1. 27 (2013), p.1071.R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003).

Google Scholar

[119] L.H. Dai, Z. Ling, Y.L. Bai: Composites Science and Technology, Vol. 61 (2001) p.1057.

Google Scholar

[9] L.H. Dai, Z. Ling, Y.L. Bai: Composites Science and Technology, Vol. 61 (2001) p.1057.

Google Scholar

[69] L.H. Dai, Z. Ling, Y.L. Bai: Composites Science and Technology, Vol. 61 (2001) p. 1057S. Shibata, M. Taya, T Mori and T. Mura: Acta Metallurgica et Materialia, Vol. 40 (1992), p.3141.P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6,231,666. (2001).

DOI: 10.1016/0956-7151(92)90477-v

Google Scholar

[7] Information on.

Google Scholar

[9] M. S. Park, Y. S. Suh and S. Song, On an implementation of the strain gradient plasticity with linear finite elements and reduced integration, Finite elements in analysis and design, 59 (2012) 35–43. Y. S. Suh, S. P. Joshi and K. T. Ramesh, An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites, Acta Materialia, 57(19) (2009) 5848–5861. R. J. Arsenault, N. and Shi, Dislocation generation due to differences between the coefficients of thermal expansion, Materials Science and Engineering, 81 (1986) 175–187.

DOI: 10.1016/j.actamat.2009.08.010

Google Scholar