Microstructure and Positron Lifetimes of Aluminide Coatings on Inconel 713

Article Preview

Abstract:

The microstructure of the palladium modified and non-modified aluminide coatings was examined by the EDS and the positron annihilation spectroscopy methods. Both coatings have a double layer structure: β-NiAl phase or β-(Ni,Pd)Al phase on the top and the interdiffusion zones with the chromium and molybdenum rich phases in the β-NiAl or or β-(Ni,Pd)Al phase below. Palladium, that forms the β-(Ni,Pd)Al phase and substitutes for nickel atoms causes the increase of the positron lifetime value due to the increase in the number of open volume defects in the lattice which are jogs or vacancies on dislocation lines.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-68

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Matysiak, M. Zagorska, A. Balkowiec, B. Adamczyk-Cieślak, R. Cygan, J. Cwajna, J. Nawrocki, K.J. Kurzydłowski: Journal of Materials Engineering and Performance Vol. 23 (2014) p.3305.

DOI: 10.1007/s11665-014-1123-4

Google Scholar

[2] J.A. Haynes, Y. Zhang, K.M. Cooley, L. Walker, K.S. Reeves, B.A. Pint: Surf. Coat. Technol. 189 (2004) p.153.

Google Scholar

[3] J.A. Haynes, K.L. More, B.A. Pint, I.G. Wright, K. Cooley, Y. Zhang: High Temperature Corrosion and Protection of Materials. Vol. 5 (2000) p.35.

Google Scholar

[4] M. Zagula-Yavorska, J. Sieniawski, T. Gancarczyk: Archives of Metallurgy and Materials. 57 (2012) p.503.

Google Scholar

[5] M. Zagula-Yavorska J. Sieniawski: JMEPEG 23 (2014) p.918.

Google Scholar

[6] B. Ning, M. Shamsuzzoha, M.L. Weaver: Surf. Coat. Technol. 200 (2005) p.1270.

Google Scholar

[7] S.J. Hong, G.H. Hwang, W.K. Han, S.G. Kang: Intermetallics 17 (2009) p.381.

Google Scholar

[8] R.Kartongo, D.Young : Materials and Corrosion Vol.59 (2008) p.455.

Google Scholar

[9] H.M. Tawancy, L.M. Alhems, M.O. Aboelfotoh : JMEPEG Vol. 26 (2017) p.3191.

Google Scholar

[10] S. McGuire, DJ. Keeble: J. Appl. Phys.Vol. 100 (2006) p.103504.

Google Scholar

[11] J. Romanowska, E. Dryzek, J. Morgiel, K, Siemek, Ł.Kolek, M. Zagula-Yavorska: Archives of Civil and Mechanical Engineering Vol. 18 (2018) p.1150.

DOI: 10.1016/j.acme.2018.03.002

Google Scholar

[12] J. Romanowska, J. Morgiel, Ł.Kolek, P. Kwolek, M. Zagila-Yavorska: Archives of Civil and Mechanical. Engineering Vol. 18 (2018) p.1421.

DOI: 10.1016/j.acme.2018.05.007

Google Scholar

[13] M. Zagula-Yavorska, J. Morgiel, J. Romanowska, J. Sieniawski: Journal of Microscopy Vol 261 (2016) p.320.

Google Scholar

[14] J. Kansy: Nucl. Instr. Methods A Vol 374 (1996) p.23.

Google Scholar

[15] P. Lamlese, P. Steinmetz, J. Steinmetz: J. Electrochem Soc Vol 142 (1995) p.497.

Google Scholar

[16] J. M Campillo Robles, E. Ogando, F. Plazaola, J. Phys.: Condens. Matter. Vol. 19 (2007) p.176222.

Google Scholar

[17] A.J. Bradley, A.Taylor, Proc.R. Soc.A 159 (1937) p.56.

Google Scholar