[1]
Gibson LJ, Ashby MF. Cellular solids: Structure and Properties, 2nd ed. Cambridge: Cambridge University Press, (1997).
Google Scholar
[2]
Miller RE. A continuum plasticity model for the constitutive and indentation behaviour of foamed metals. International Journal of Mechanical Sciences (2000);42(4):729–54.
DOI: 10.1016/s0020-7403(99)00021-1
Google Scholar
[3]
Zhang J, Kikuchi N, Li VC, Yee AF, Nusholtz GS. Constitutive modeling of polymeric foam material subjected to dynamic crash loading. International Journal of Impact Engineering (1998); 21(5): 369–86.
DOI: 10.1016/s0734-743x(97)00087-0
Google Scholar
[4]
Deshpande VS, Fleck NA. Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids (2000); 48 (6–7): 1253–1283.
DOI: 10.1016/s0022-5096(99)00082-4
Google Scholar
[5]
Gioux G, McCormack TM, Gibson LJ. Failure of aluminium foams under multiaxial loads. International Journal of Mechanical Sciences (2000); 42(6): 1097–117.
DOI: 10.1016/s0020-7403(99)00043-0
Google Scholar
[6]
Sridhar I, Fleck NA. The multiaxial yield behaviour of an aluminium alloy foam. Journal of Materials Science (2005); 40(15): 4005–4008.
DOI: 10.1007/s10853-005-1916-9
Google Scholar
[7]
Zhou ZW, Wang ZH, Zhao LM, Shu XF. Uniaxial and biaxial failure behaviors of aluminum alloy foams. Composites Part B: Engineering (2014); 61: 340–349.
DOI: 10.1016/j.compositesb.2013.01.004
Google Scholar
[8]
LS-DYNA. Version 971, Livermore Software Technology Corporation, (2010).
Google Scholar
[9]
ABAQUS. Version 6.11, Dassault Systems Simulia Corporation, (2011).
Google Scholar
[10]
Hanssen AG, Hopperstad OS, Langseth M, Ilstad, H. Validation of constitutive models applicable to aluminium foams. International Journal of Mechanical Sciences (2002); 44(2): 359–406.
DOI: 10.1016/s0020-7403(01)00091-1
Google Scholar
[11]
Liu QL, Subhash G. A phenomenological constitutive model for foams under large deformations. Polymer Engineering & Science (2004); 44(3): 463–473.
DOI: 10.1002/pen.20041
Google Scholar
[12]
Avalle M, Belingardi G, Ibba A. Mechanical models of cellular solids: parameters identification from experimental tests. International Journal of Impact Engineering (2007); 34(1): 3–27.
DOI: 10.1016/j.ijimpeng.2006.06.012
Google Scholar
[13]
Zheng ZJ, Wang CF, Yu JL, Reid SR, Harrigan JJ. Dynamic stress–strain states for metal foams using a 3D cellular model. Journal of the Mechanics and Physics of Solids (2014); 72:93–114.
DOI: 10.1016/j.jmps.2014.07.013
Google Scholar
[14]
Ding YY, Wang SL, Zheng ZJ, Yang LM, Yu JL. On the stress–strain states of cellular materials under high loading rates. Theoretical and Applied Mechanics Letters (2016); 6(3): 122–125.
DOI: 10.1016/j.taml.2016.05.001
Google Scholar
[15]
Lan XK, Feng SS, Huang Q, Zhou T. Blast response of continues-density graded cellular material based on the 3D Voronoi model. Defence Technology. (In press).
DOI: 10.1016/j.dt.2018.06.003
Google Scholar
[16]
Yang J, Wang SL, Ding YY, Zheng ZJ, Yu JL. Crashworthiness of graded cellular materials: A design strategy based on a nonlinear plastic shock model. Materials Science and Engineering: A (2017); 680: 411–420.
DOI: 10.1016/j.msea.2016.11.010
Google Scholar
[17]
Huang SN, Ding YY, Wang SL, He SY, Zheng ZJ, Yu JL. Experimental investigation of dynamic material parameters of closed-cell aluminium foams (in Chinese). Journal of Experimental Mechanics. (In press).
Google Scholar
[18]
Zhang XY, Tang LQ, Liu ZJ, Jiang ZY, Liu YP, Wu YD. Yield properties of closed-cell aluminum foam under triaxial loadings by a 3D Voronoi model. Mechanics of Materials (2017); 104: 73–84.
DOI: 10.1016/j.mechmat.2016.10.007
Google Scholar
[19]
Ayyagari RS, Vural M. Multiaxial yield surface of transversely isotropic foams: Part I—Modeling. Journal of the Mechanics and Physics of Solids (2015); 74: 49–67.
DOI: 10.1016/j.jmps.2014.10.005
Google Scholar