Nano-Delivery Materials: Review of Development and Application in Drug/Gene Transport

Article Preview

Abstract:

As the nanotechnology rapidly develops, the combination of nanotechnology and biotechnology to build nanoparticles with biological functionalization has brought new opportunities for the development and application of biomedical diagnosis. Many new non-viral drug/gene vectors were constructed by using nanoparticles as drug/gene carriers, especially by making conventional inorganic materials into nanoparticles and performing functional modifications. In this paper, the physical and chemical properties, preparation methods and application in drug/gene transport of several nanomaterials including mesoporous silica nanoparticles, gold nanoparticles, dendrimers, graphene oxide and carbon nanotubes are reviewed respectively. At the same time, the merit and dismerit of different nanocarriers and their application scenarios are compared. It has been found that the excellent biocompatibility and large specific surface area of inorganic nanomaterials have great potential for drug/gene delivery. Although there are many bottlenecks and challenges for nanomaterials to settle during drug delivery development and industrial production, the improvement of inorganic nanomaterials and the development of new nanocarriers can promote the wider progress of nanocarriers in drug/gene transport.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-166

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ma X Y and Chen H B: China Medical Herald. Vo32. 13-15 (2006).

Google Scholar

[2] Fan D H, Dai H L, Liu Y and Wei R M: Journal of wuhan university of technology. Vo4. 109-111 (1995).

Google Scholar

[3] Birrenbach, G. and Speiser, P. P: Pharm. Sci. Vo65. 1763-1766 (1976).

Google Scholar

[4] Yang T Y, Pan W S and Hu J: World Pharmac. Vo4. 222-225 (1991).

Google Scholar

[5] Xu Z P, Zeng Q H, Lu G Q and et al.: Inorganic nanoparticles as carriers for efficient cellular delivery (Chemical Engineering Science, China, 2006).

Google Scholar

[6] Xiaohong Jin, in: Mesoporous Silica: Synthesis, Morphology control, Assembly, and Property. Zhejiang University published, (2005).

Google Scholar

[7] Kresge, C. T., Leonowicz, M. E. and et al.: Nature. Vo359. 710-712 (1992).

Google Scholar

[8] Yang N, Zhu S M, and Zhang D: Chinese Journal of Inorganic Chemistry. Vo9. 1627-1630 (2007).

Google Scholar

[9] Zhang L, Wang X, Xue Y and et al.: Catalysis Science & Technology. Vo4. 1939-1948 (2004).

Google Scholar

[10] Hou G H, Luo J H and Chen J W: Journal of Materials Science and Engineering. Vo4. 528-530 (2006).

Google Scholar

[11] Ma X H, Zhao Y B and et al.: ACTA PHYSICO-CHIMICA SINICA. Vo3. 492-496 (2008).

Google Scholar

[12] Jin X T, Liu G, Li J Z, et al: Chemical Journal of Chinese Universities. Vo37. 224-231(2016).

Google Scholar

[13] Rashid, M. H, Bhattacharjee, R. R, Kotal, A. and Mandal, T. K: Langmuir. Vo22. 7141-7143 (2006).

Google Scholar

[14] Daniel, M. C., Astruc, D: Chemical Reviews. Vo104. 293-346 (2004).

Google Scholar

[15] Sun S J and Jiang Z L: Precious Metals. Vo26. 55-65 (2005).

Google Scholar

[16] Yuan S, Liu Z and Ma S.: Materials Review. Vo26. 52-58 (2012).

Google Scholar

[17] Tiwari, P. M., Vig, K., Dennis, V. A. and et al.: Nanomaterials. Vo1. 31-63 (2011).

Google Scholar

[18] FRENS, G: Nature Physical Science. Vo241. 20-22 (1973).

Google Scholar

[19] Martin, C. R.: Science. Vo266. 1961-1966 (1994).

Google Scholar

[20] Wang C R, Fang Y and Feng J W: ACTA CHIMICA SINICA. Vo65. 1177-1180 (2007).

Google Scholar

[21] Z. WangY.-K. and SuH.-L. Li.: APPl Phys A. Vo74. 563-565 (2002).

Google Scholar

[22] S Chah, J H Fendler and J Yi: Journal of Colloid and Interface Science. Vo250. 142-148 (2002).

Google Scholar

[23] Zhu Z H, Zhu T and Liu Z F: ACTA PHYSICO-CHIMICA SINICA. Vo15. 966-970 (1999).

Google Scholar

[24] Wang P B, in: Preparation and characterization of controllable gold nanoparticles. Lanzhou University Of Technology published, (2009).

Google Scholar

[25] Wang H J, Xue C Y and Yuan Y L: Chinese Journal of Sensors and Actuators. Vo24. 14-17 (2011).

Google Scholar

[26] Sau, Tapan K, Murphy and Catherine J: Am. Chem. Vo126. 8648-8649 (2004).

Google Scholar

[27] Zhu J, Wang Y C and Wang Q: ACTA PHOTONICA SINICA. Vo32. P.58 (2003).

Google Scholar

[28] Shen L M, Yao J L and Gu R A: Spectroscopy and Spectral Analysis. Vo12. 1998-2001 (2005).

Google Scholar

[29] Feng X L, in: Mechanism study of electrochemical synthesis of gold nanoparticles and phase transfer technology of precious metal nanoparticles. Shangdong University published, (2007).

Google Scholar

[30] Wen L, in: Synthesis, Characterization and Applications of Au Clusters and Nanoparticles. Xiamen University pulished, (2008).

Google Scholar

[31] Wu S M, Su Y L and Ma L Y: Microbiology. Vo41. 2516-2524 (2014).

Google Scholar

[32] Hou Z S, Zhang Q Z and Zhu M G: Shandong Chemical Lndustry. Vo2. 10-12 (2012).

Google Scholar

[33] Liu X X, in: Structurally flexible PAMAM dendrimers as novel nanovectors for nucleic acid delivery. Wuhan University published, (2010).

Google Scholar

[34] Wang G, Luo Y J and Tan H M: Polymer materials and engineering. Vo5. 1-6 (2002).

Google Scholar

[35] Sun W Y, in: Synthesis characterization and properties of functional carbosilane dendrimer. Shandong University published, (2009).

Google Scholar

[36] Xu P, in: Preparation of PAMAM Dendrimer Nano Assembly System and its Application in Gene Delivery. Shanghai Jiaotong University published, (2007).

Google Scholar

[37] Buhleier E, Wehner W and Vogtle F: Synthesis Vo155. (1978).

Google Scholar

[38] Lothian-Tomalia M K, Hedstrand D M and et al.: Tetrahedron. Vo53. 15495-15513 (1997).

Google Scholar

[39] Zhao H: Journal of Zhongzhou University. Vo1. 103-105 (2004).

Google Scholar

[40] Ajayan, P. M: Chemical Reviews. Vo99. 1787-1800 (1997).

Google Scholar

[41] Raymond M Reilly: Journal of Nuclear Medicine. Vo48. 1039-1042 (2007).

Google Scholar

[42] Alberto Bianco and Kostas Kostarelos: Current Opinion in Chemical Biology. Vo9. 674-679 (2005).

Google Scholar

[43] Deng Y, Huang X R and Wu X L: Material Review. Vo26. 84-87 (2012).

Google Scholar

[44] Matsuo Y and Sugie Y: Carbon. Vo36. 301-303 (1998).

Google Scholar

[45] Staudenmaier L: European Journal of Inorganic Chemistry. Vo32. 1394-1399 (2010).

Google Scholar

[46] Hummers W S and Offeman R E: Journal of the American Chemical Society. Vo80.1339-1339 (1958).

Google Scholar

[47] Li J H, Kuang D Z, Feng Y L and et al.: Chinese Journal of Analytical Chemistry. Vo41. 98-104 (2013).

Google Scholar

[48] Zhao Q P, Yang C, Li X R, Song G J and Cong L L: Journal of Bohai University (Natural Science Edition). Vo36. 333-336 (2015).

Google Scholar

[49] Lai, C. Y.; Trewyn, B. G; Jeftinija and et al.: Am. Chem. Soc. Vo125, P. 4451 (2003).

Google Scholar

[50] Giri, S.; Trewyn, B. G; Stellmaker, M. P. and et al.: Angew. Chem., Int. Ed. Vo44, P. 5038 (2005).

Google Scholar

[51] Lai C Y, Trewyn B G, Jeftinija D M and et al.: American Chemical Society. Journal. Vo125. 4451-4459 (2003).

Google Scholar

[52] Zhu C L, Song X Y and et al.: Journal of Materials Chemistry. Vo19. 7765-7770 (2009).

Google Scholar

[53] Yehui Wu, Yuzhi Chen and et al.: Sensors & Actuators: B. Chemical. Vo270. 443-451 (2018).

Google Scholar

[54] Y.M. Narode, V.M. Mokashi, and G.K. Sharma: Journal of Luminescence. Vo201. 479-484 (2018).

Google Scholar

[55] An X Q, Zhan F and Zhu Y Y: Langmuir. Vo29. 1061-1068 (2013).

Google Scholar

[56] Bianco, A., Kostarelos, K. and Prato, M.: Expert Opin Drug Deliv. Vo5. 331-342 (2008).

Google Scholar

[57] Pan B F, Cui D X, Xu P and et al.: Chinese Journal of Cancer Biotherapy. Vo3. 176-180 (2006).

Google Scholar

[58] Giri, S. Trewyn,B. G; Stellmaker, M. P., and Lin, V. S. Y: Angew. Chem., Int. Ed. Vo44. P. 5038 (2005).

Google Scholar