A Reinforced Kite-Shaped Microstructure with Negative Linear and Area Hygrothermal Expansions

Article Preview

Abstract:

Materials and structures are exposed to fluctuating temperature and moisture concentration, which alter their sizes; the capability to adjust the hygrothermal expansion, including into the negative region, permits greater control of hygrothermal stresses and strains. This paper introduces a type of 2D truss microstructure where each unit takes the shape of a kite with an additional reinforcing rod on the kite’s axis of symmetry. The coefficients of thermal and moisture expansions are positive in the direction parallel to the reinforcing rods, but linear negative hygrothermal expansion is obtained in the direction perpendicular to the reinforcing rods. The condition that gives areal negative hygrothermal expansion is also established, wherein this region is demarcated by the zero hygrothermal expansion line, which is attained when the inclined rods are perpendicular to each other.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

272-277

Citation:

Online since:

May 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.N. Chu, N. Saka and N.P. Suh: Materials Science and Engineering, vol. 95 (1987) pp.303-308.

Google Scholar

[2] A.W. Sleight: Endeavour, vol. 19 (1995) 64-68.

Google Scholar

[3] T.A. Mary, J.S.O. Evans, T. Vogt and A.W. Sleight: Science, vol. 272 (1996) pp.90-92.

Google Scholar

[4] A.L. Goodwin, M. Calleja, M.J. Conterio, M.T. Dove, J.S.O. Evans, D.A. Keen, L. Peters and M.G. Tucker: Science, vol. 319 (2008) pp.794-797.

DOI: 10.1126/science.1151442

Google Scholar

[5] A.D. Fortes, E. Suard and K.S. Knight: Science, vol. 331 (2011) pp.742-746.

Google Scholar

[6] K. Takenaka, Y. Okamoto, T. Shinoda, N. Katayama and Y. Sakai: Nature Communications, vol. 8 (2017) p.14102.

Google Scholar

[7] T.C. Lim: Journal of Materials Science, vol. 40 (2005) pp.3275-3277.

Google Scholar

[8] T.C. Lim: Physica Status Solidi B, vol. 248 (2011) pp.140-147.

Google Scholar

[9] T.C. Lim: Journal of Materials Science, vol. 47 (2012) pp.368-373.

Google Scholar

[10] T.C. Lim: Physica Status Solidi B, vol. 250 (2013) pp.2062-2069.

Google Scholar

[11] T.C. Lim: Physica Status Solidi B, vol. 254 (2017) p.1600775.

Google Scholar

[12] M.T. Dove and H. Fang: Reports on Progress in Physics, vol. 79 (2016) p.066503.

Google Scholar

[13] T.C. Lim: Negative moisture expansion, Abstract Book of the 8th International Conference on Auxetics and Other materials and Models with Negative, Characteristics, and the 13th International Workshop on Auxetics and Related Systems (2017) p.33.

Google Scholar

[14] T.C. Lim: Materials Science Forum, vol. 928 (2018) pp.277-282.

Google Scholar

[15] T.C. Lim: Physica Status Solidi B, vol. 256 (2019) p.1800032.

Google Scholar

[16] T.C. Lim: Physica Status Solidi B, vol. 254 (2017) p.1600682.

Google Scholar

[17] T.C. Lim: Auxetic Materials and Structures (Springer, Singapore 2015).

Google Scholar

[18] P. Sobieszczyk, M. Majka, D. Kuźma, T.C. Lim and P. Zieliński: Physica Status Solidi B, vol. 252 (2015) pp.1615-1619.

DOI: 10.1002/pssb.201552256

Google Scholar

[19] L. Boldrin, S. Hummel, F. Scarpa, D. Di Maio, C. Lira, M. Ruzzene, C.D.L. Remillat, T.C. Lim, R. Rajasekaran, S. Patsias: Composite Structures, vol. 149 (2016) pp.114-124.

DOI: 10.1016/j.compstruct.2016.03.044

Google Scholar

[20] T.C. Lim: Physica Status Solidi B, vol. 254 (2017) p.1600784.

Google Scholar

[21] T.C. Lim: Physica Status Solidi B, vol. 254 (2017) p.1700014.

Google Scholar

[22] T.C. Lim: Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics, vol. 170 (2017) pp.167-173.

Google Scholar

[23] T.C. Lim: International Journal of Mechanical and Materials Engineering, vol. 11 (2016) p.13.

Google Scholar

[24] T.C. Lim: Mechanics Based Design of Structures and Machines, vol. 44 (2016) pp.514-522.

Google Scholar

[25] T.C. Lim: Journal of Mechanics, vol. 32 (2016) pp.413-419.

Google Scholar

[26] T.C. Lim: Smart Materials and Structures, vol. 25 (2016) p.054001.

Google Scholar

[27] T.C. Lim: Smart Materials and Structures, vol. 25 (2016) p.054008.

Google Scholar

[28] T.C. Lim: Journal of Engineering Materials and Technology, vol. 138 (2016) p.014501.

Google Scholar

[29] T.C. Lim: Journal of Engineering Materials and Technology, vol. 138 (2016) p.041011.

Google Scholar

[30] T.C. Lim: Journal of Materials: Design and Applications, vol. 229 (2015) pp.447-454.

Google Scholar

[31] T.C. Lim: Journal of Engineering Materials and Technology, vol. 137 (2015) p.024502.

Google Scholar

[32] T.C. Lim: Mechanics of Advanced Materials and Structures, vol. 22 (2015) pp.205-212.

Google Scholar

[33] T.C. Lim: Mechanics Research Communications, vol. 61 (2014) pp.60-66.

Google Scholar

[34] T.C. Lim: Journal of Engineering Materials and Technology, vol. 136 (2014) p.031007.

Google Scholar

[35] T.C. Lim: International Journal of Applied Mechanics, vol. 6 (2014) p.1450012.

Google Scholar

[36] T.C. Lim: Journal of Engineering Materials and Technology, vol. 136 (2014) p.021007.

Google Scholar

[37] T.C. Lim: Smart Materials and Structures, vol. 23 (2014) p.045004.

Google Scholar

[38] T.C. Lim: Journal of Thermal Stresses, vol. 36 (2013) pp.1131-1140.

Google Scholar

[39] T.C. Lim: Physica Status Solidi RRL, vol. 11 (2017) p.1600440.

Google Scholar

[40] T.C. Lim: Materials, vol. 11 (2018) p.223.

Google Scholar

[41] V.A. Gorodtsov, D.S. Lisovenko, T.C. Lim: Composite Structures, vol. 194 (2018) pp.643-651.

Google Scholar

[42] T.C. Lim: Composite Structures, vol. 209 (2019) pp.34-44.

Google Scholar

[43] T.C. Lim: SN Applied Sciences, vol. 1 (2019) p.176.

Google Scholar