Granulation and Photocatalytic Performance of Anodized TiO2 Nanotubes with Microwave-Assisted Annealing

Article Preview

Abstract:

The present work investigates the effects of microwave-assisted annealing on the granulation and photocatalytic performance of anodic TiO2 nanotubes. The results indicate that although microwave-assisted heating can transform the amorphous TiO2 nanotubes into completely anatase one within 5min, it brings the collapse and granulation of TiO2 nanotubes, which weaken their photocatalytic activity. Meanwhile, the detachment and evolution of F- rich layer to a layer of TiO2 membrane with rounding-off surface, and the stripping of TiO2 nanotube bottom from its body are also observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

377-381

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.R.B. D. Regonini, A. Jaroenworaluck, R. Stevens, Materials Science and Engineering R (2013) 30.

Google Scholar

[2] X. Wang, Z. Li, J. Shi, Y. Yu, Chemical Reviews (2014).

Google Scholar

[3] I. Paramasivam, H. Jha, N. Liu, P. Schmuki, Small 8 (2012) 3073-3103.

Google Scholar

[4] A. Ghicov, P. Schmuki, Chem Commun (2009) 2791-2808.

Google Scholar

[5] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv Mater 11 (1999) 1307-1311.

DOI: 10.1002/(sici)1521-4095(199910)11:15<1307::aid-adma1307>3.0.co;2-h

Google Scholar

[6] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14 (1998) 3160-3163.

DOI: 10.1021/la9713816

Google Scholar

[7] M.S. Sander, M.J. Côté, W. Gu, B.M. Kile, C.P. Tripp, Adv Mater 16 (2004) 2052-2057.

Google Scholar

[8] Y. Suzuki, S. Yoshikawa, J Mater Res 19 (2004) 982-985.

Google Scholar

[9] A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki, physica status solidi (a) 203 (2006) R28-R30.

DOI: 10.1002/pssa.200622041

Google Scholar

[10] Z. He, J. Xiao, F. Xia, K. Kajiyoshi, C. Samart, H. Zhang, Appl Surf Sci 313 (2014) 633-639.

Google Scholar

[11] A. Mazare, I. Paramasivam, F. Schmidt-Stein, K. Lee, I. Demetrescu, P. Schmuki, Electrochim Acta 66 (2012) 12-21.

DOI: 10.1016/j.electacta.2012.01.001

Google Scholar

[12] N. Liu, S.P. Albu, K. Lee, S. So, P. Schmuki, Electrochim Acta 82 (2012) 98-102.

Google Scholar

[13] N.K. Allam, K. Shankar, C.A. Grimes, Adv Mater 20 (2008) 3942-3946.

Google Scholar

[14] S.P. Albu, H. Tsuchiya, S. Fujimoto, P. Schmuki, European Journal of Inorganic Chemistry 2010 (2010) 4351-4356.

Google Scholar

[15] J.M. Aquino, R.C. Rocha-Filho, N. Bocchi, S.R. Biaggio, Mater Lett 126 (2014) 52-54.

Google Scholar

[16] M. Zlamal, J.M. Macak, P. Schimuki, J. Krysa, Electrochem Commun 9 (2007) 2822-2826.

Google Scholar

[17] K. Lee, A. Mazare, P. Schmuki, Chem Rev 114 (2014) 9385-9454.

Google Scholar

[18] S.P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. LeClere, G.E. Thompson, J.M. Macak, P. Schmuki, Adv Mater 20 (2008) 4135-4139.

DOI: 10.1002/adma.200801189

Google Scholar