Effect of Ingredient Loading and Temperature on Tensile Properties of Surfactant-Loaded Natural Rubber Vulcanizates

Article Preview

Abstract:

Tensile properties are among the measures that give rubber products value. In this study, the effect of ingredient loading and temperature on the tensile properties of surfactant-loaded natural rubber vulcanizates (NRV) are investigated. Rubber dogbone samples are compounded using an L12 orthogonal array of Taguchi design of experiment, where ingredients are treated as factors varied at low and high loadings. Rubber specimens for each formulation are thermally aged for 20 days in ovens with temperatures of 40, 50, and 60 °C. Results show that zinc oxide (ZnO), paraffin wax, sulfur, mercaptobenzothiazole (MBT), and diphenylguanidine (DPG) significantly have the highest effect on increasing the elastic modulus while decreasing the tensile strength, tensile strain, and tensile set. Used oil has the highest effect on decreasing the elastic modulus but has the highest effect on increasing tensile strength, tensile strain, and tensile set. High loading of cocamide diethanolamide (coca DEA) significantly increases tensile strength at 60 °C. High loading of glycerol monostearate (GMS) significantly decreases tensile strength and strain at 40 °C. Highest elastic modulus, tensile strength, strain, and set are achieved when NRV are thermally aged at 50 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

356-360

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Gupta. List of Profitable Plastic and Rubber Products Manufacturing Business. Small Scale Plastic and Rubber Processing Business Projects. Information on http://www.entrepreneurindia.co.

Google Scholar

[2] S. Thomas, D. Durand, C. Chassenieux and P. Jyotishkumar: Handbook of biopolymer-based materials: from blends and composites to gels and complex networks (Wiley-VCH, Germany, 2013).

DOI: 10.1002/9783527652457

Google Scholar

[3] F. Saeed, A. Ansarifar, R.J. Ellis, Y. Haile‐Meskel and A.S. Farid: J. Appl. Polym. Sci. Vol 120 (2011) pp.2497-2507.

DOI: 10.1002/app.33396

Google Scholar

[4] M. Akiba and S. Hashim: Prog. Polym. Sci. Vol. 22 (1997) pp.475-521.

Google Scholar

[5] W.F. Russell: Ind. Eng. Chem. Vol. 21 (1929) pp.727-729.

Google Scholar

[6] S. S. Choi: J. Appl. Polym. Sci. Vol. 65 (1997) pp.117-125.

Google Scholar

[7] N. M. Huntink and R. N. Datta: KGK Kautschuk Gummi Kunststoffe, Vol. 56 (2003) pp.310-315.

Google Scholar

[8] J. C. Bart: Polymer additive analytics: industrial practice and case studies. Firenze University Press (2006).

Google Scholar

[9] R. J. Schaefer, in: Harris' Shock and Vibration Handbook, edited by C. M. Harris, A. G. Piersol, McGraw–Hill: New York (2002).

Google Scholar

[10] B. B. Pajarito and J. M. Arabit: Key Eng. Mater. Vol. 705 (2016) pp.35-39.

Google Scholar

[11] D. E. O. Santiago, B. B. Pajarito, M. J. A. Aparre1, K. J. E. Biolena, and Y. C. W. Condez; Diffusion Foundations Vol. 9 (2016) pp.90-99.

Google Scholar

[12] J. M. Arabit and B. B. Pajarito: Adv. Mater. Res. Vol. 1125 (2015) pp.64-68.

Google Scholar

[13] Matador Rubber: Rubber Chemistry (Virtual Education in Rubber Technology 2007).

Google Scholar

[14] M. Sugiura, M. Horii, H. Hayashi and M. Sasayama M: Appl. Clay Sci. Vol 11 (1996) pp.89-97.

Google Scholar

[15] A. Ciesielski:.An Introduction to Rubber Technology (Rapra Technology Limited, UK 1999).

Google Scholar