[1]
N. Bhasin, A Laboratory Study on the Utilisation of Waste Materials for the Construction of Roads in Black Cotton Soil Areas,, ROAD RESEARCH PAPERS;, no. N225, (1988).
Google Scholar
[2]
S. Vichan and R. Rachan, Chemical stabilization of soft Bangkok clay using the blend of calcium carbide residue and biomass ash,, Soils and Foundations, vol. 53, no. 2, pp.272-281, (2013).
DOI: 10.1016/j.sandf.2013.02.007
Google Scholar
[3]
S. Vichan, R. J. S. Rachan, and Foundations, Chemical stabilization of soft Bangkok clay using the blend of calcium carbide residue and biomass ash,, vol. 53, no. 2, pp.272-281, (2013).
DOI: 10.1016/j.sandf.2013.02.007
Google Scholar
[4]
D. J. A. I. ASTM, West Conshohocken, PA, 3282-93. Standard practice for classification of soil and soil-aggregate mixtures for Highway construction purposes,, (2004).
Google Scholar
[5]
N. Teerachaikulpanich and V. Phupat, Geological and Geotechnical Engineering Properties of Bangkok Clay,, in Proceedings of the Japan National Conference on Geotechnical Engineering The 38th Japan National Conference on Geotechnical Engineering, 2003, pp.143-144: The Japanese Geotechnical Society.
Google Scholar
[6]
S. Horpibulsuk, S. Shibuya, K. Fuenkajorn, and W. Katkan, Assessment of engineering properties of Bangkok clay,, Canadian Geotechnical Journal, vol. 44, no. 2, pp.173-187, (2007).
DOI: 10.1139/t06-101
Google Scholar
[7]
N. Yoobanpot and P. Jamsawang, Effect of Cement Replacement by Rice Husk Ash on Soft Soil Stabilization.
Google Scholar
[8]
D. K. Rao, P. Pranav, and M. Anusha, Stabilization of expansive soil with rice husk ash, lime and gypsum–an experimental study,, International Journal of Engineering Science and Technology, vol. 3, no. 11, pp.8076-85, (2011).
Google Scholar
[9]
V. Kannan and K. Ganesan, Chloride and chemical resistance of self compacting concrete containing rice husk ash and metakaolin,, Construction and Building Materials, vol. 51, pp.225-234, (2014).
DOI: 10.1016/j.conbuildmat.2013.10.050
Google Scholar
[10]
R. J. R. Pode and S. E. Reviews, Potential applications of rice husk ash waste from rice husk biomass power plant,, vol. 53, pp.1468-1485, (2016).
DOI: 10.1016/j.rser.2015.09.051
Google Scholar
[11]
E. Basha, R. Hashim, H. Mahmud, A. J. C. Muntohar, and B. Materials, Stabilization of residual soil with rice husk ash and cement,, vol. 19, no. 6, pp.448-453, (2005).
DOI: 10.1016/j.conbuildmat.2004.08.001
Google Scholar
[12]
D. J. A. b. o. A. S. ASTM, 698-00a,(2002). Standard test methods for laboratory compaction characteristics of soil using standard effort,, vol. 4, pp.78-88.
Google Scholar
[13]
F. H. Ali, A. Adnan, C. K. J. G. Choy, and G. Engineering, Geotechnical properties of a chemically stabilized soil from Malaysia with rice husk ash as an additive,, vol. 10, no. 2, pp.117-134, (1992).
DOI: 10.1007/bf00881147
Google Scholar
[14]
T. Olinic, E. J. A. Olinic, and a. s. procedia, The effect of quicklime stabilization on soil properties,, vol. 10, pp.444-451, (2016).
DOI: 10.1016/j.aaspro.2016.09.013
Google Scholar
[15]
A. J. A. A. B. o. S. Standard, D4318 (2005) Standard test methods for liquid limit, plastic limit, and plasticity index of soils,, vol. 4, (2005).
Google Scholar
[16]
A. I. Standard, West Conshohocken, Pa, D854. Standard test methods for specific gravity of soil solids by water pycnometer. ,, ed, (2014).
Google Scholar
[17]
A. J. Standard, West Conshohocken, PA, D422–63. Test method for particle-size analysis of soils. ASTM International.,, (2007).
Google Scholar
[18]
D. J. A. I. ASTM, West Conshohocken, PA, 2487. Standard Practice for Classification of Soils for Engineering Purposes,, (2006).
Google Scholar
[19]
ASTM-D698, Standard test methods for laboratory compaction characteristics of soil using standard effort,, Philadelphia, PA.: American Society for Testing and Materials, (2007).
Google Scholar
[20]
P. Y. Lee and R. J. J. H. R. R. Suedkamp, Characteristics of irregularly shaped compaction curves of soils,, vol. 381, pp.1-9, (1972).
Google Scholar
[21]
B. M. Das and K. Sobhan, Principles of geotechnical engineering. Cengage Learning, (2013).
Google Scholar