[1]
Y. Song, Y. Liu, S. Yu, X. Zhu, and Q. Wang, Plasma electrolytic oxidation coating on AZ91 magnesium alloy modified by neodymium and its corrosion resistance, Appl. Surf. Sci. 254 (2008) 3014-3020.
DOI: 10.1016/j.apsusc.2007.10.043
Google Scholar
[2]
A. Ghasemi, V. Raja, C. Blawert, W. Dietzel, and K. Kainer, Study of the structure and corrosion behavior of PEO coatings on AM50 magnesium alloy by electrochemical impedance spectroscopy, Surf. Coat. Technol. 202 (2008) 3513-3518.
DOI: 10.1016/j.surfcoat.2007.12.033
Google Scholar
[3]
J. D. Majumdar, R. Galun, B. Mordike, and I. Manna, Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy, Mater. Sci. Eng: A. 361 (2003) 119-129.
DOI: 10.1016/s0921-5093(03)00519-7
Google Scholar
[4]
G. Ma, S. Gong, G. Lin, L. Zhang, and G. Sun, A study of structure and properties of Ti-doped DLC film by reactive magnetron sputtering with ion implantation, Appl. Surf. Sci. 258 (2012) 3045-3050.
DOI: 10.1016/j.apsusc.2011.11.034
Google Scholar
[5]
Y. Liu, A. Erdemir, and E. Meletis, A study of the wear mechanism of diamond-like carbon films, Surf. Coat. Technol. 82 (1996) 48-56.
DOI: 10.1016/0257-8972(95)02623-1
Google Scholar
[6]
W. Dai, G. Wu, and A. Wang, Preparation, characterization and properties of Cr-incorporated DLC films on magnesium alloy, Diamond Relat. Mater. 19 (2010) 1307-1315.
DOI: 10.1016/j.diamond.2010.06.018
Google Scholar
[7]
G. Wu, W. Dai, H. Zheng, and A. Wang, Improving wear resistance and corrosion resistance of AZ31 magnesium alloy by DLC/AlN/Al coating, Surf. Coat. Technol. 205 (2010) 2067-2073.
DOI: 10.1016/j.surfcoat.2010.08.103
Google Scholar
[8]
Y. Harada and S. Kumai, Effect of ceramics coating using sol–gel processing on corrosion resistance and age hardening of AZ80 magnesium alloy substrate, Surf. Coat. Technol. 228 (2013) 59-67.
DOI: 10.1016/j.surfcoat.2013.04.004
Google Scholar
[9]
Z. Szaraz, Z. Trojanova, M. Cabbibo, and E. Evangelista, Strengthening in a WE54 magnesium alloy containing SiC particles, Mater. Sci. Eng: A. 462 (2007) 225-229.
DOI: 10.1016/j.msea.2006.01.182
Google Scholar
[10]
J. Liang, P. Wang, L. Hu, and J. Hao, Tribological properties of duplex MAO/DLC coatings on magnesium alloy using combined microarc oxidation and filtered cathodic arc deposition, Mater. Sci. Eng: A. 454 (2007) 164-169.
DOI: 10.1016/j.msea.2006.12.051
Google Scholar
[11]
H. Sun, Y.-N. Shi, and M.-X. Zhang, Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer, Surf. Coat. Technol. 202 (2008) 2859-2864.
DOI: 10.1016/j.surfcoat.2007.10.025
Google Scholar
[12]
P. Sioshansi and E. J. Tobin, Surface treatment of biomaterials by ion beam processes, Surf. Coat. Technol. 83 (1996) 175-182.
DOI: 10.1016/0257-8972(95)02838-2
Google Scholar
[13]
S. Sattel, J. Robertson, and H. Ehrhardt, Effects of deposition temperature on the properties of hydrogenated tetrahedral amorphous carbon, J. Appl. Phys. 82 (1997) 4566-4576.
DOI: 10.1063/1.366193
Google Scholar
[14]
N. Dwivedi et al., Probing the role of an atomically thin SiN x interlayer on the structure of ultrathin carbon films, Sci. Rep. 4 (2014) 5021.
Google Scholar
[15]
W. Ding, Y. Guo, D. Ju, S. Sato, and T. Tsunoda, The effect of CH4/H2 ratio on the surface properties of HDPE treated by CH x ion beam bombardment, Mod. Phys. Lett. B. 30 (2016) 1650214.
DOI: 10.1142/s0217984916502146
Google Scholar
[16]
J. Liang, M. Chen, W. Tsai, S. Lee, and C. Ai, Characteristics of diamond-like carbon film synthesized on AISI 304 austenite stainless steel using plasma immersion ion implantation and deposition, Nucl. Instrum. Meth. B. 257 (2007) 696-701.
DOI: 10.1016/j.nimb.2007.01.143
Google Scholar
[17]
X. Li and B. Bhushan, Micro/nanomechanical and tribological characterization of ultrathin amorphous carbon coatings, J. Mater. Res. 14 (1999) 2328-2337.
DOI: 10.1557/jmr.1999.0309
Google Scholar