[1]
J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci. 46 (2001) 559–632.
DOI: 10.1016/s0079-6425(00)00002-5
Google Scholar
[2]
T. Hipke, G. Lange, R. Poss, Taschenbuch für Aluminiumschäume, Aluminium-Verlag, (2007).
Google Scholar
[3]
D. Nestler, H. Jung, M. Trautmann, B. Wielage, G. Wagner, W.G. Drossel, C. Drebenstedt, T. Hipke, New Sandwich Structures Consisting of Aluminium Foam and Thermoplastic Hybrid Laminate Top Layers, MSF 825-826 (2015) 797–805.
DOI: 10.4028/www.scientific.net/msf.825-826.797
Google Scholar
[4]
A.A. Aksenov, Y.N. Mansurov, D.O. Ivanov, V.P. Reva, D.S. Kadyrova, R.K. Shuvatkin, E.D. Kim, Mechanical Alloying of Secondary Raw Material for Foam Aluminum Production, Metallurgist 61 (2017) 475–484.
DOI: 10.1007/s11015-017-0520-y
Google Scholar
[5]
M. Haesche, J. Weise, F. Garcia-Moreno, J. Banhart, Influence of particle additions on the foaming behaviour of AlSi11/TiH2 composites made by semi-solid processing, Materials Science and Engineering: A 480 (2008) 283–288.
DOI: 10.1016/j.msea.2007.07.040
Google Scholar
[6]
X. Ding, Y. Liu, X. Chen, H. Zhang, Y. Li, Optimization of cellular structure of aluminum foams produced by powder metallurgy method, Materials Letters 216 (2018) 38–41.
DOI: 10.1016/j.matlet.2017.12.144
Google Scholar
[7]
Y. Cheng, Y. Li, X. Chen, T. SHI, Z. Liu, N. Wang, Fabrication of Aluminum Foams with Small Pore Size by Melt Foaming Method, Metallurgical and Materials Transactions B 48 (2017) 754–762.
DOI: 10.1007/s11663-016-0815-6
Google Scholar
[8]
B.K. VanLeeuwen, K.A. Darling, C.C. Koch, R.O. Scattergood, Novel technique for the synthesis of ultra-fine porosity metal foam via the inclusion of condensed argon through cryogenic mechanical alloying, Materials Science and Engineering: A 528 (2011) 2192–2195.
DOI: 10.1016/j.msea.2010.11.057
Google Scholar
[9]
J. Hohlfeld, T. Hipke, F. Schuller, Sandwich manufacturing with foam core and aluminum face sheets - A new process without rolling, (2018).
DOI: 10.4028/www.scientific.net/msf.933.3
Google Scholar
[10]
S. Rybandt, C. Lies, J. Hohlfeld, T. Hipke, Aluminiumschaum—Ein Werkstoff für das Bauwesen? Teil II: Anwendungsmöglichkeiten für Aluminiumschaum sowie deren Verbunde, Bauingenieur 86 (2011) 425.
Google Scholar
[11]
T. Hipke, Materials progress: Metal-foam-filled steel tube reduces weight in structures, Advanced Materials and Processes 163 (2005) 15–16.
Google Scholar
[12]
P.M. Proa-Flores, G. Mendoza-Suarez, R.A.L. Drew, Effect of TiH2 particle size distribution on aluminum foaming using the powder metallurgy method, Journal of Materials Science 47 (2012) 455–464.
DOI: 10.1007/s10853-011-5820-1
Google Scholar
[13]
D. Nestler, S. Siebeck, H. Podlesak, B. Wielage, S. Wagner, M. Hockauf, Influence of process control agent (PCA) and atmosphere during high-energy ball milling for the production of particle-reinforced aluminium matrix composites, Mat.-wiss. u. Werkstofftech 42 (2011) 580–584.
DOI: 10.1007/978-3-642-17384-4_9
Google Scholar
[14]
S. Siebeck, D. Nestler, H. Podlesak, B. Wielage, Influence of Milling Atmosphere on the High-Energy Ball-Milling Process of Producing Particle-Reinforced Aluminum Matrix Composites, in: M. Fathi (Ed.), Integration of Practice-Oriented Knowledge Technology: Trends and Prospectives, Springer, Berlin Heidelberg, 2013, p.315–321.
DOI: 10.1007/978-3-642-34471-8_25
Google Scholar
[15]
D. Legland, I. Arganda-Carreras, P. Andrey, MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ, Bioinformatics (Oxford, England) 32 (2016) 3532–3534.
DOI: 10.1093/bioinformatics/btw413
Google Scholar
[16]
B. Wielage, D. Nestler, S. Siebeck, H. Podlesak, Fabrication of silicon carbide reinforced aluminium powders by high-energy ball-milling, Materialwiss. Werkstofftech. 41 (2010) 476–481.
DOI: 10.1002/mawe.201000629
Google Scholar
[17]
V. Bhosle, E.G. Baburaj, M. Miranova, K. Salama, Dehydrogenation of TiH2, Materials Science and Engineering: A 356 (2003) 190–199.
DOI: 10.1016/s0921-5093(03)00117-5
Google Scholar