Stress Distribution in Front of the Crack - Analytical Solutions vs. Numerical. Can the Differences be Minimized?

Article Preview

Abstract:

It is shown that it is possible to obtain such material parameters as α and Q, which, when used in the analytical formulae proposed by Hutchinson, Rice and Rosengren and O’Dowd and Shih, can lead to stress distributions similar to those obtained numerically (except for the region at the immediate crack front). The numerical solution obtained after calibration of the stress-strain uniaxial curve and assuming large strains is expected to be close to the “"real” stress distribution. Thus, the analytical solution is also close to the “real” stress distribution. These new values of α and Q can now be used in fracture criteria proposed within the scope of classical nonlinear fracture mechanics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-14

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hutchinson JW. Singular behaviour at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids 1968;16:13-31.

DOI: 10.1016/0022-5096(68)90014-8

Google Scholar

[2] Rice JR, Rosengren GF. Plane strain deformation near a crack tip in a power-law hardening material. Journal of the Mechanics and Physics of Solids 1968;16:1-12.

DOI: 10.1016/0022-5096(68)90013-6

Google Scholar

[3] Dugdale DS. Yielding of steel sheets containing slits. J.Mech.Phys.Solids 1960;8:100-8.

Google Scholar

[4] McClintock FA. Plasticity aspects of fracture in fracture an advanced treatise, Edited by H. Liebowitz. Academic Press, New York and London 1971;3:47-225.

Google Scholar

[5] Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics 1968;35:379-386.

DOI: 10.1115/1.3601206

Google Scholar

[6] Cherepanov GP. Crack propagation in continuous media. J. Appl. Math. Mech. 1967;31:503-512. English translation from PMM 1967;31:476-488.

DOI: 10.1016/0021-8928(67)90034-2

Google Scholar

[7] Neimitz A, Gałkiewicz J, Graba M. Computer program: Name: HRR_par program: Internet address: http://fracture.tu.kielce.pl/index.php?pokaz=hrr.

Google Scholar

[8] O'Dowd NP, Shih CF. Family of crack-tip fields characterized by a triaxiality parameter – I. Structure of fields. J. Mech. Phys. Solids 1991;39(8):989-1015.

DOI: 10.1016/0022-5096(91)90049-t

Google Scholar

[9] FITNET: Fitness – for – Service. Fracture – Fatigue – Creep – Corrosion. Edited by. Koçak M, Webster S, Janosch JJ, Ainsworth RA, Koers R. ISBN 978-3-940923-00-4, printed by: GKSS Research Centre Geesthacht (2008).

Google Scholar

[10] O'Dowd NP. Application of two parameter approaches in elastic-plastic fracture mechanics. Engineering Fracture Mechanics 1985;52(3):445-465.

DOI: 10.1016/0013-7944(95)00033-r

Google Scholar

[11] Ainsworth RA, O'Dowd NP. Constraint in the failure assessment diagram approach for fracture assessment. ASME J Pressure Vessels Technology 1995;117:260-267.

DOI: 10.1115/1.2842121

Google Scholar

[12] Neimitz A, Graba M, Gałkiewicz J. An alternative formulation of the Ritchie-Knott-Rice local fracture criterion. Engineering Fracture Mechanics 2017;74(8):1308-1322.

DOI: 10.1016/j.engfracmech.2006.07.015

Google Scholar

[13] Yang S, Chao YJ, Sutton MA. Higher order asymptotic crack tip in a power–law hardening material. Engineering Fracture Mechanics 1993;45(1):1-20.

DOI: 10.1016/0013-7944(93)90002-a

Google Scholar

[14] Guo W. Elastoplastic three dimensional crack border field - I. Singular structure of the field. Engineering Fracture Mechanics 1993;46:93-104.

DOI: 10.1016/0013-7944(93)90306-d

Google Scholar

[15] Neimitz A, Graba M. Analytical-numerical hybrid method to determine the stress field in front of the crack in 3D elastic-plastic structural elements. Proceedings of 17th European Conference on Fracture - Multilevel Approach to Fracture of Materials, Components and Structures, Brno - Czech Republic, 2-5 September 2008, article on CD, abstract - book of abstracts p.85.

Google Scholar

[16] Neimitz A, Dzioba I. The influence of the out-of-plane and in-plane constraint on fracture toughness of high strength steel in the ductile to brittle transition temperature range. Engineering Fracture Mechanics 2015;147:431-448.

DOI: 10.1016/j.engfracmech.2015.07.017

Google Scholar

[17] Xiang M, Guo W. Formulation of the stress fields in power law solids ahead of three-dimensional tensile cracks. International Journal of Solids and Structures 2013;50:3067-3088.

DOI: 10.1016/j.ijsolstr.2013.05.011

Google Scholar

[18] Bai Y., Wierzbicki T., A new model plasticity and fracture with pressure and Lode dependence, International Journal of Plasticity, 24 (2008), 1071-1096.

DOI: 10.1016/j.ijplas.2007.09.004

Google Scholar

[19] Neimitz A, Gałkiewicz J, Dzioba I. Calibration of constitutive equations under conditions of large strains and stress triaxiality. Archives of Civil and Mechanical Engineering 2018; 18: 1123-1135.

DOI: 10.1016/j.acme.2018.02.013

Google Scholar

[20] O'Dowd N.P. (1995), Applications of two parameter approaches in elastic-plastic fracture mechanics,, Engineering Fracture Mechanics, Vol. 52, No. 3, 445-465.

DOI: 10.1016/0013-7944(95)00033-r

Google Scholar

[21] Sherry, A.H., Wilkes M.A., Beardsmore D.W., Lidbury D.P.G., Engineering Fracture Mechanics, 2005,72, str. 2373-2395.

DOI: 10.1016/j.engfracmech.2004.12.009

Google Scholar

[22] Sherry, A.H., Hooton D.G., Beardsmore D.W., Lidbury D.P.G. Engineering Fracture Mechanics, 2005, 72: 2396-2415.

DOI: 10.1016/j.engfracmech.2004.12.010

Google Scholar