Catalyst Free Hydroxyl Protection of Quinine via Esterification

Article Preview

Abstract:

A method to protect the hydroxyl group of quinine via esterification is developed. The method uses acetyl and benzoyl as the protection group. The method employs no catalyst that generates reasonable yield at 83% for acetyl and 73% for benzoyl. This catalyst free method emphasizes on the importance substrate reactivity to achieve free catalyst procedure. Ester form of quinine synthesized might be further functionalized for various aims in accordance to its rich functional group and building block of quinine.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.M.R. Hoffmann, J. Frackenpohl, Recent advances in Cinchona alkaloid chemistry. European J. Org. Chem. (2004) 4293–4312.

DOI: 10.1002/ejoc.200400294

Google Scholar

[2] G. Stork, D. Niu, A. Fujimoto, E.R. Koft, J.M. Balkovec, J.R. Tata, G.R. Dake, The First Stereoselective Total Synthesis of Quinine. J. Am. Chem. Soc. 123 (2001) 3239–3242.

DOI: 10.1021/ja004325r

Google Scholar

[3] I.T. Raheem, S.N. Goodman, E.N. Jacobsen, Catalytic Asymmetric Total Syntheses of Quinine and Quinidine. J. Am. Chem. Soc. 126 (2004) 706–707.

DOI: 10.1021/ja039550y

Google Scholar

[4] J. Igarashi, M. Katsukawa, Y. Wang, H.P. Acharya, Stereocontrolled synthesis of quinine and quinidine. Tetrahedron Lett. 45 (2004) 3783–3786.

DOI: 10.1016/j.tetlet.2004.03.085

Google Scholar

[5] S. France, D.J. Guerin, S.J. Miller, T. Lectka, Nucleophilic Chiral Amines as Catalysts in Asymmetric Synthesis. Chem. Rev. 103 (2003) 2985–3012.

DOI: 10.1021/cr020061a

Google Scholar

[6] W. Zhao, C. Qu, L. Yang, Y. Cui, Chitosan ‐ supported cinchonine as an efficient organocatalyst for direct asymmetric aldol reaction in water. Chinese J. Catal. 36 (2015) 367–371.

DOI: 10.1016/s1872-2067(14)60248-5

Google Scholar

[7] D.F. Taber, J.C. Amedio, Y.K. Patel, Preparation of β-Keto Esters by 4-DMAP-Catalyzed Ester Exchange. J. Org. Chem. 50 (1985) 3618–3619.

DOI: 10.1021/jo00219a035

Google Scholar

[8] D. Scebach, A. Thaler, D. Blaser, S.Y. Ko, Transesterifications with 1,8‐Diazabicyclo[5.4.0]undec‐7‐ene/Lithium Bromide (DBU/LiBr) – Also Applicable to Cleavage of Peptides from Resins in Merrifleld Syntheses. Helv. Chim. Acta 74 (1991) 1102–1118.

DOI: 10.1002/hlca.19910740520

Google Scholar

[9] H. Yamaguchi, Y. Fujiwara, Y. Minoura, Transesterification of Poly (methy1 acrylate) with Optically Active Alcohols. Die Makromol. Chemie 175 (1974) 7–16.

Google Scholar

[10] R. Singha, J.K. Ray, Selective acetylation of primary alcohols by ethyl acetate. Tetrahedron Lett. 57 (2016) 5395–5398.

DOI: 10.1016/j.tetlet.2016.10.088

Google Scholar

[11] D. Seebach, E. Hungerbuehler, R. Naef, P. Schnurrenberger, B. Weidmann, M. Züger, Titanate-Mediated Transesterification with Functionalized Substrates. Synthesis 13 (1982) 138–141.

DOI: 10.1055/s-1982-29718

Google Scholar

[12] E.A. Mensah, L. Earl, Mild and highly efficient copper(I) inspired acylation of alcohols and polyols. Catalysts 7 (2017).

DOI: 10.3390/catal7010033

Google Scholar

[13] S. Magens, M. Ertelt, A. Jatsch, B. Plietker, A nucleophilic Fe catalyst for transesterifications under neutral conditions. Org. Lett. 10 (2008) 53–56.

DOI: 10.1021/ol702580a

Google Scholar

[14] D. Nakatake, R. Yazaki, T. Ohshima, Chemoselective Transesterification of Acrylate Derivatives for Functionalized Monomer Synthesis Using a Hard Zinc Alkoxide. 1–5.

DOI: 10.1002/ejoc.201600737

Google Scholar

[15] T. Ohshima, Development of tetranuclear zinc cluster-catalyzed environmentally friendly reactions and mechanistic studies. Chem. Pharm. Bull. 64 (2016) 523–539.

DOI: 10.1248/cpb.c16-00028

Google Scholar

[16] F.F.M. de Silva, D.A. Ferreira, F.J.Q. Monte, T.L.G. de Lemos, Synthesis of Chiral Esters and Alcohols via Enantioselective Esterification with Citrus aurantium Peels as Biocatalyst. Ind. Crops Prod. 96 (2017) 23-29.

DOI: 10.1016/j.indcrop.2016.11.013

Google Scholar

[17] A.K. Banerjee, W. Vera, H. Mora, M.S. Laya, L. Bedoya, E.V. Cabrera, Iodine in organic synthesis. J. Sci. Ind. Res. 65 (2006) 299–308.

DOI: 10.1002/chin.200633282

Google Scholar

[18] M.S. Yusubov, V.V. Zhdankin, Iodine catalysis : A green alternative to transition metals in organic chemistry and technology. Resour. Technol. 1 (2015) 49–67.

DOI: 10.1016/j.reffit.2015.06.001

Google Scholar

[19] A. Biswas, G.S. Selling, R.L. Shogren, J.L. Willet, C.M. Buchanan, H.N. Cheng, Iodine-catalyzed esterification of polysaccharides. Chim. Oggi 27 (2009) 33–35.

Google Scholar

[20] M. Jereb, D. Vražič, M. Zupan, Dual behavior of alcohols in iodine-catalyzed esterification under solvent-free reaction conditions. Tetrahedron Lett. 50 (2009) 2347–2352.

DOI: 10.1016/j.tetlet.2009.02.224

Google Scholar

[21] H. Li, W. Xie, Transesterification of soybean oil to biodiesel with Zn/I2 catalyst. Catal. Letters 107 (2006) 25–30.

DOI: 10.1007/s10562-005-9727-9

Google Scholar