Adsorption of Humic Acid from Aqueous Solution onto PAA Nanofiber: Thermodynamic Study

Article Preview

Abstract:

The potential of polyacrylic acid (PAA) nanofiber prepared by the electrospinning technique for the humic acid (HA) adsorption from aqueous solution was investigated. In this study, the adsorption experiments were carried out to investigate the effect of temperatures in a batch system. From experiment it can be seen that the HA adsorption using PAA nanofiber increased with increasing temperature. Thermodynamic parameters data indicated that the HA adsorption process was non-spontaneous and endothermic under the experimental conditions, with the Gibbs free energy (∆Go) in the range of 1.721-0.980 kJ mol-1, enthalpy (∆Ho) and entropy (∆So) of 7.24 kJ mol-1 and 18.52 J mol-1 K-1, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-103

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Zulfikar, E. Novita, R. Hertadi and S.D. Djajanti, Removal of humic acid from peat water using untreated powdered eggshell as a low cost adsorbent, Int. J. Environ. Sci. Technol., 10 (2013) 1357-1366.

DOI: 10.1007/s13762-013-0204-5

Google Scholar

[2] M. A. Zulfikar, I. Afrianingsih, M. Nasir and N. Handayani, Fabrication of nanofiber membrane functionalized with molecularly imprinted polymers for humic acid removal from peat water, Desalin. Water Treat. 97 (2017) 203-212.

DOI: 10.5004/dwt.2017.21443

Google Scholar

[3] M.A. Zulfikar, Adsorption of Humic Acid from Aqueous Solution onto PVDF Nanofiber: Effect of Temperature, Mater. Sci. Forum 863 (2016) 123-126.

DOI: 10.4028/www.scientific.net/msf.863.123

Google Scholar

[4] J.C. Rojas, J. Pérez, G. Garralón, F. Plaza, B. Moreno and M.A. Gómez, Humic acids removal by aerated spiral-wound ultrafiltration membrane combined with coagulation–hydraulic flocculation, Desalination 266 (2011) 128-133.

DOI: 10.1016/j.desal.2010.08.013

Google Scholar

[5] J.H. Wang, S.R. Zheng, J.L. Liu, and Z.Y. Xu, Tannic acid adsorption on amino-functionalized magnetic mesoporous silica, Chem. Eng. J. 165 (2010) 10-16.

DOI: 10.1016/j.cej.2010.08.066

Google Scholar

[6] C.S. Uygunera, S.A. Suphandaga, A. Kercb and M. Bekbolet, Evaluation of adsorption and coagulation characteristics of humic acids preceded by alternative advanced oxidation techniques, Desalination 210 (2007) 183-193.

DOI: 10.1016/j.desal.2006.05.043

Google Scholar

[7] D. Sonea, R. Pode, F. Manea, C. Ratiu, C. Lazau, I. Grozescu and G. Burtica, The comparative assessment of photolysis, sorption and photocatalysis processes to humic acids removal from water. Chemical Bulletin of POLITEHNICA, Univ. (Timisoara) 55 (2010) 148-151.

Google Scholar

[8] C. Sun, Q. Yue, B. Gao, R. Mu, J. Liu, Y. Zhao, Z. Yang and W. Xu, Effect of pH and shear force on flocs characteristics for humic acid removal using polyferric aluminum chloride organic polymer dual-coagulants, Desalination 281 (2011) 243-247.

DOI: 10.1016/j.desal.2011.07.065

Google Scholar

[9] M.C.S. Reddy, L. Sivaramakrishna and A.V. Reddy, The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium, J. Hazard. Mater. 203-204 (2012) 118-127.

DOI: 10.1016/j.jhazmat.2011.11.083

Google Scholar

[10] P.K. Malik, Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36, Dyes and Pigm. 56 (2003) 239-249.

DOI: 10.1016/s0143-7208(02)00159-6

Google Scholar

[11] M. Toor and B. Jin, Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye, Chem. Eng. J. 187 (2012) 79-88.

DOI: 10.1016/j.cej.2012.01.089

Google Scholar

[12] Z. Ma and S. Ramakrishna, Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification, J. Membr. Sci., 319 (2008) 23-28.

DOI: 10.1016/j.memsci.2008.03.045

Google Scholar

[13] H. Zhang, H. Nie, D. Yu, C. Wu, Y. Zhang and C. White C, Surface modification of electrospun polyacrylonitrile nanofiber towards developing an affinity membrane for bromelain adsorption, Desalination, 256 (2010) 141-147.

DOI: 10.1016/j.desal.2010.01.026

Google Scholar

[14] M. Aliabadi, M. Irani, J. Ismaeili, H. Piri and M. Parnian, Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution, Chem. Eng. J., 220 (2013) 237-243.

DOI: 10.1016/j.cej.2013.01.021

Google Scholar

[15] M. Aliabadi, M. Irani, J. Ismaeili and S. Najafzadeh, Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution, J. Taiwan Inst. Chem. Eng.. 45 (2014) 518.

DOI: 10.1016/j.jtice.2013.04.016

Google Scholar

[16] D. Sharma, F. Li and Y. Wu, Electrospinning of Nafion and polyvinyl alcohol into nanofiber membranes: A facile approach to fabricate functional adsorbent for heavy metals, Colloids and Surf. A, 457 (2014) 236-243.

DOI: 10.1016/j.colsurfa.2014.05.038

Google Scholar

[17] C. Peng, J. Zhang , Z. Xiong, B. Zhao and P. Liu, Fabrication of porous hollow-Al2O3 nanofibers by facile electrospinning and its application for water remediation, Microporous and Mesoporous Mater., 215 (2015) 133-142.M.

DOI: 10.1016/j.micromeso.2015.05.026

Google Scholar

[18] Q. Xin, J. Fua, Z. Chen, S. Liu, Y. Yan and J. Zhang, Polypyrrole nanofibers as a high-efficient adsorbent for the removal of methyl orange from aqueous solution, J. Environ. Chem. Eng., 3 (2015) 1637-1647.

DOI: 10.1016/j.jece.2015.06.012

Google Scholar

[19] R. Xu, M. Jia, Y. Zhang and F. Li, Sorption of malachite green on vinyl-modified mesoporous poly(acrylic acid)/SiO2 composite nanofiber membranes, Microporous and Mesoporous Mater., 149 (2012) 111-118.

DOI: 10.1016/j.micromeso.2011.08.024

Google Scholar

[20] F.F. Liu, J.L. Fan, S.G. Wang and G.H. Ma, Adsorption of natural organic matter analogues by multi-walled carbon nanotubes: Comparison with powdered activated carbon, Chem. Eng. J. 219 (2013) 450-458.

DOI: 10.1016/j.cej.2013.01.026

Google Scholar

[21] M.A. Zulfikar, and H. Setiyanto, Study of the adsorption kinetics and thermodynamic for the removal of Congo red from aqueous solution using powdered eggshell, Int. J. ChemTech. Res., 5(4) (2013) 1671-1678.

Google Scholar

[22] M.B. Amran and M.A. Zulfikar, Color removal of congo red dyestuff by adsorption onto phyrrophyllite, Int. J. Environ. Sci. 67 (2010) 911-920.

Google Scholar

[23] H. Hiroyuki, M. Fukudas, A. Okamato and T. Kataoka, Adsorption of acid dye cross linked chitosan fibers equilibria, Chem. Engg. Sci. 48 (1994) 2267-2272.

DOI: 10.1016/0009-2509(93)80242-i

Google Scholar

[24] M. Saker and S. Podar, Study of adsorption of methyl violet onto flyash, Proc. Ind. Annual Communication 31 (1994) 213-215.

Google Scholar

[25] S.I. Lyubchik, A.I. Lyubchik, O.L. Galushko, L.P. Tikhonova, J. Vital, I.M. Fonseca, S.B. Lyubchik, Kinetics and thermodynamics of the Cr(III) adsorption on the activated carbon from comingled wastes, Colloid Surf. A - Physicochem. Eng. Asp. 242 (2004) 151-158.

DOI: 10.1016/j.colsurfa.2004.04.066

Google Scholar