Surface Modification of Titanium Implants

Article Preview

Abstract:

The influence of nitriding temperature (900 and 850°C) and partial pressure of nitrogen (105 and 1 Pa) on morphology and phase structural state of modified surface layers of commercially pure titanium (cp-Ti) was determined. It was shown that nitrided titanium provided much better anti-corrosion protection than nitrided Ti-6Al-4V alloy, and its corrosion resistance increased with decreasing nitriding temperature and partial pressure of nitrogen.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-220

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Lutjering, J.C. Williams, Titanium, Springer-Verlag, Berlin-Heidelberg-New York, (2007).

Google Scholar

[2] K. Niespodziana, K. Jurczyk, M. Jurczyk, The synthesis of titanium alloys for biomedical applications, Rev. Adv. Mater. Sci. 18 (2008) 236-240.

Google Scholar

[3] I. Cvijovic-Alagic, Z. Cvijovic, S. Mitrovic, V. Panic, M. Rakin, Wear and corrosion behariour of Ti-13Nb-13Zr and Ti-6Al-4V alloys in simulated physiological solution, Corros. Sci. 53 (2011) 796-808.

DOI: 10.1016/j.corsci.2010.11.014

Google Scholar

[4] L. le Guehennec, A. Soueidan, P. Layrolle, Y. Amouriq, Surface treatments of titanium dental implants for rapid osseointegration, Dental materials 23 (2007) 844-854.

DOI: 10.1016/j.dental.2006.06.025

Google Scholar

[5] X. Liu, P.K. Chu, C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci. Eng. R 47 (2004) 49-121.

DOI: 10.1016/j.mser.2004.11.001

Google Scholar

[6] E. Lukina, A. Laka, M. Kollerov, M. Sampiev, P. Mason, P. Wagstaff, H. Noordeen, W.W. Yoon, G. Blunn, Metal concentrations in the blood and tissues after implantation of titanium growth guidance sliding instrumentation, Spine J. 16 (2016) 380-388.

DOI: 10.1016/j.spinee.2015.11.040

Google Scholar

[7] A. Zhecheva, W. Sha, S. Malinov, A. Long, Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods, Surf. Coat. Technol. 200 (2005) 2192-2207.

DOI: 10.1016/j.surfcoat.2004.07.115

Google Scholar

[8] M.A. Khan, R.L. Williams, D.F. Williams, In vitro corrosion and wear of titanium alloys in the biological environment, Biomaterials 17 (1996) 2117-2126.

DOI: 10.1016/0142-9612(96)00029-4

Google Scholar

[9] T.I. Kim, J.H. Han, I.S. Lee, K.H. Lee, M.C. Shin, B.B. Choi, New titanium alloys for biomaterials: a study of mechanical and corrosion properties and cytotoxicity, Biomed. Mater. Eng. 7 (4) (1997) 253-263.

DOI: 10.3233/bme-1997-7404

Google Scholar

[10] E. Galvanetto, F.P. Galliano, A. Fossati, F. Borgioli, Corrosion resistance properties of plasma nitrided Ti-6Al-4V alloy in hydrochloric acid solutions, Corros. Sci. 44 (2002) 1593-1606.

DOI: 10.1016/s0010-938x(01)00157-3

Google Scholar

[11] V. M. Fedirko, I. M. Pohrelyuk, Nitriding of titanium and its alloys, Кyiv Press, (1995).

Google Scholar

[12] V.A. Alves, R.Q. Reis , I.C.B. Santos, D.G. Souza, T. de F. Gonçalves, M.A. Pereira da Silva, A. Rossi, L.A. da Silva, In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25 oC and 37 oC, Corros. Sci. 51 (2009) 2473-2482.

DOI: 10.1016/j.corsci.2009.06.035

Google Scholar

[13] M.A. Arenas, T.J. Tate, A. Conde, J. de Damborenea, Corrosion behaviour of nitrogen implanted titanium in simulated body fluid, Br. Corros. J. 35 (2000) 1-5.

DOI: 10.1179/000705900101501308

Google Scholar

[14] V.V. Shyrokov, L.A. Arendar, Yu.I. Koval'chyk, Kh.B. Vasyliv, O.M. Vasyliv, Computer processing of profilograms of friction surfaces, Mater. Sci. 41 (2005) 107-112.

DOI: 10.1007/s11003-005-0138-2

Google Scholar

[15] S. Bose, L.C. Pathak, R. Singh, Response of boride coating on the Ti-6Al-4V alloy to corrosion and fretting corrosion behavior in Ringer's solution for bio-implant application, Appl. Surf. Sci. 433 (2018) 1158-1174.

DOI: 10.1016/j.apsusc.2017.09.223

Google Scholar