[1]
A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, V.M. Fomin, Cold Spray Technology, Elsevier, Amsterdam, (2006).
DOI: 10.1016/b978-008045155-8/50004-1
Google Scholar
[2]
J. Tang, G.C. Saha, P. Richter, J. Kondás, A. Colella, P. Matteazzi, Effects of post-spray heat treatment on hardness and wear properties of Ti-WC high-pressure cold spray coatings, J. Therm. Spray Technol. 27 (2018) 1153-1164.
DOI: 10.1007/s11666-018-0762-7
Google Scholar
[3]
S. Pathak, G.C. Saha, Development of sustainable cold spray coatings and 3D additive manufacturing components for repair/manufacturing applications: a critical review, Coatings 7 (2017) 1-8.
DOI: 10.3390/coatings7080122
Google Scholar
[4]
Y. Chen, X. Shan, H. Chen, New direction of computational fluid dynamics and its applications in industry, Science in China Series E: Technological Sciences 50(5) (2007) 521-533.
DOI: 10.1007/s11431-007-0075-4
Google Scholar
[5]
C.J. Li, W.Y. Li, H. Liao, Examination of the critical velocity for deposition of particles in cold spraying, J. Therm. Spray Technol. 15 (2006) 212-222.
DOI: 10.1361/105996306x108093
Google Scholar
[6]
K. Kang, S. Yoon, Y. Ji, C. Lee, Oxidation dependency of critical velocity for aluminum feedstock deposition in kinetic spraying process, Mater. Sci. Eng. A 486 (2008) 300-307.
DOI: 10.1016/j.msea.2007.09.010
Google Scholar
[7]
T. Schmidt, F. Gartner, H. Assadi, H. Kreye, Development of a generalized parameter window for cold spray deposition, Acta Mater. 54 (2006) 729-742.
DOI: 10.1016/j.actamat.2005.10.005
Google Scholar
[8]
X.J. Ning, J.H. Jang, H.J. Kim, The effects of powder properties on in-flight particle velocity and deposition process during low pressure cold spray process, Appl. Surf. Sci. 253 (2007) 7449-7455.
DOI: 10.1016/j.apsusc.2007.03.031
Google Scholar
[9]
P.H. Oosthuizen, W.E. Carscallen, Compressible Fluid Flow, McGraw-Hill, New York, (1997).
Google Scholar
[10]
K. Taylor, B. Jodoin, J. Karov, Particle loading effect in cold spray, J. Therm. Spray Technol. 15 (2006) 273-279.
DOI: 10.1361/105996306x108237
Google Scholar
[11]
O.C. Ozdemir, C.A. Widener, M.J. Carter, K.W. Johnson, Predicting the effects of powder feeding rates on particle impact conditions and cold spray deposited coatings, J. Therm. Spray Technol. 26 (2017) 1598-1615.
DOI: 10.1007/s11666-017-0611-0
Google Scholar
[12]
O.C. Ozdemir, C.A. Widener, Influence of powder injection parameters in high-pressure cold spray, J. Therm. Spray Technol. 26 (2017) 1411-1422.
DOI: 10.1007/s11666-017-0606-x
Google Scholar
[13]
W.Y. Li, C.J. Li, Optimization of spray conditions in cold spraying based on the numerical analysis of particle velocity, Trans. Nonferrous Met. Soc. China 14 (2004) 43-48.
Google Scholar
[14]
W.Y. Li, H. Liao, G. Douchy, C. Coddet, Optimal design of a cold spray nozzle by numerical analysis of particle velocity and experimental validation with 316L stainless steel powder, Mater. Design 28 (2007) 2129-2137.
DOI: 10.1016/j.matdes.2006.05.016
Google Scholar