Microstructure Investigation of He+- Implanted and Post-Implantation-Annealed 4H-SiC

Article Preview

Abstract:

Microstructure damage and evolution in 4H-SiC under He-ion implantation and post-annealing have been investigated by the combination of fourier transform infrared spectrometer (FTIR), Raman scattering spectroscopy and high resolution X-ray diffractometer (HRXRD). After implantation, the 4H-SiC specimen exhibits a heavy damage and some amorphous state appear. With increasing annealing temperature, to some extent recovery in damaged lattices was observed, as a result of the peaks of Raman and HRXRD regain their intensities. However, the reverse annealing behavior in damaged peaks was displayed after annealed at 973K. This reverse annealing effect was revealed to be due to the formation and the growth of He bubbles above 973K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

302-306

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Benyagoub, A. Audren, Study of the damage produced in silicon carbide by high energy heavy ions, Nucl. Instrum. Meth. Phys. Res. B, 267 (2009) 1255-1258.

DOI: 10.1016/j.nimb.2009.01.026

Google Scholar

[2] R.H. Jones, D. Steiner, H.L. Heinisch et al. Radiation resistant ceramic matrix composites, J. Nucl. Mater. 245 (1997) 87-107.

Google Scholar

[3] A.R. Raffray, L. El-Guebaly, S. Gordeev et al. High performance blanket for ARIES-AT power plant, Fus. Eng. Des. 58-59 (2001) 549-553.

DOI: 10.1016/s0920-3796(01)00493-8

Google Scholar

[4] J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and range of ions in solids, vol. 1, Pergamon Press, New York, (1984).

Google Scholar

[5] W.J. Weber, F. Gao, R. Devanathan et al. The efficiency of damage production in silicon carbide. Nucl. Instr. Meth. B 218 (2004) 68-73.

Google Scholar

[6] Z.C. Feng, S.C. Lien, J.H. Zhao et al. Structural and Optical Studies on Ion-implanted 6H-SiC Thin Films, Thin Solid Films, 516 (2008) 5217-5222.

DOI: 10.1016/j.tsf.2007.07.094

Google Scholar

[7] R.T. Holm, P.H. Klein, P.E.R. Nordquist, Infrared reflectance evaluation of chemically vapor deposited β‐SiC films grown on Si substrates, J. Appl. Phys. 60 (1986) 1479-1485.

DOI: 10.1063/1.337275

Google Scholar

[8] W. Chang, Z.C. Feng, J. Lin et al. Optical Characterization of Ion-Implanted 4H-SiC, Mater. Sci. Forum. 389-393 (2002) 647-650.

DOI: 10.4028/www.scientific.net/msf.389-393.647

Google Scholar

[9] Z.C. Feng, S.J. Chua, K. Tone et al. Recrystallization of carbon-aluminum ion coimplanted epitaxial silicon carbide - Evidenced by room temperature optical measurements, Appl. Phys. Lett. 75 (1999) 472 -474.

DOI: 10.1063/1.124412

Google Scholar

[10] D.W. Feldman, J.H. Parker Jr., W.J. Choyke et al. Raman Scattering in 6H SiC, Phys. Rev. Lett. 170 (1968) 698 -704.

Google Scholar

[11] P.F. Wang, L. Huang, W. Zhu et al. Raman scattering of neutron irradiated 6H-SiC, Solid. State. Commun. 152 (2012) 887 -890.

DOI: 10.1016/j.ssc.2012.02.010

Google Scholar