Effects of Extraction Conditions on Total Phenolic Content and Total Flavonoid Content of Roselle (Hibiscus sabdariffa L.) Extracts

Article Preview

Abstract:

The objective of this study was to determine the optimal value of factors affecting the extraction of compounds such as, polyphenols, flavonoids of Roselle. The investigated factors included extraction temperatures (30, 40, 50, 60, 70 and 80°C), extraction time (30, 60, 90, 120 and 150 minutes) and solid to solvent ratio (1:5, 1:10, 1:20, 1:40 and 1:50 g/mL). The efficiency of extraction was evaluated based on total phenolic content (TPC) and total flavonoid content (TFC). The results showed that temperature range of 60–80°C was the appropriate temperature for TFC while extraction temperature over 60°C was suitable for achieving highest TPC. Considering the effect of extraction time, duration of 90–150 minutes facilitated the extraction of both phenolics and flavonoids. Moreover, the solid to solvent 1:20 was chosen for extraction process based on the balance of antioxidant contents and their yield.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

469-474

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Raghu, Y. Naidoo, Y. H. Dewir, Secretory structures in the leaves of Hibiscus sabdariffa L., South African Journal of Botany, 121 (2019) 16-25.

DOI: 10.1016/j.sajb.2018.08.018

Google Scholar

[2] Ghazala Riaz, Rajni Chopra, A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L., Biomedicine & Pharmacotherapy,102 (2018) 575-586.

DOI: 10.1016/j.biopha.2018.03.023

Google Scholar

[3] Siriphan Sukkhaeng, Somnuk Promdang, Uthaiwan Doung-ngern, Fruit characters and physico-chemical properties of roselle (Hibiscus sabdariffa L.) in Thailand—A screening of 13 new genotypes, Journal of Applied Research on Medicinal and Aromatic Plants, 11(2018) 47-53.

DOI: 10.1016/j.jarmap.2018.10.001

Google Scholar

[4] Inês Da-Costa-Rocha, Bernd Bonnlaender, Hartwig Sievers, Ivo Pischel, Michael Heinrich, Hibiscus sabdariffa L. – A phytochemical and pharmacological review, Food Chemistry, 165 (2014) 424-443.

DOI: 10.1016/j.foodchem.2014.05.002

Google Scholar

[5] Maria Antónia Nunes, Francisca Rodrigues, Rita C. Alves, Maria Beatriz P. P. Oliveira, Herbal products containing Hibiscus sabdariffa L., Crataegus spp., and Panax spp.: Labeling and safety concerns, Food Research International 100 (2017) 529-540.

DOI: 10.1016/j.foodres.2017.07.031

Google Scholar

[6] Emad Mohamed Abdallah, Antibacterial activity of Hibiscus sabdariffa L. calyces against hospital isolates of multidrug resistant Acinetobacter baumannii, Journal of Acute Disease, 5 2016 512-516.

DOI: 10.1016/j.joad.2016.08.024

Google Scholar

[7] Raheem Mohssin Shadhan, Siti Pauliena Mohd Bohari, Effects of Hibiscus sabdariffa Linn. fruit extracts on α-glucosidase enzyme, glucose diffusion and wound healing activities, Asian Pacific Journal of Tropical Biomedicine, 7 (2017) 466-472.

DOI: 10.1016/j.apjtb.2017.01.023

Google Scholar

[8] Heba A. Sindi, Lisa J. Marshall, Michael R. A. Morgan, Comparative chemical and biochemical analysis of extracts of Hibiscus sabdariffa, Food Chemistry, 164 (2014) 23-29.

DOI: 10.1016/j.foodchem.2014.04.097

Google Scholar

[9] Pi-Jen Tsai, John McIntosh, Philip Pearce, Blake Camden, Brian R Jordan, Anthocyanin and antioxidant capacity in Roselle (Hibiscus Sabdariffa L.) extract, Food Research International, 35 (2002) 351-356.

DOI: 10.1016/s0963-9969(01)00129-6

Google Scholar

[10] Soledad Guardiola, Núria Mach, Therapeutic potential of Hibiscus sabdariffa: A review of the scientific evidence, Endocrinología y Nutrición (English Edition), 61 274-295.

DOI: 10.1016/j.endoen.2014.04.003

Google Scholar

[11] V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent,, in Methods in enzymology, 299 (1999) 152–178.

DOI: 10.1016/s0076-6879(99)99017-1

Google Scholar

[12] Y. Gong, Z. Hou, Y. Gao, Y. Xue, X. Liu, and G. Liu, Optimization of extraction parameters of bioactive components from defatted marigold (Tagetes erecta L.) residue using response surface methodology,, Food Bioprod. Process., 91 (2012) 9–16.

DOI: 10.1016/j.fbp.2010.12.004

Google Scholar

[13] I. F. Strati and V. Oreopoulou, Effect of extraction parameters on the carotenoid recovery from tomato waste,, Int. J. food Sci. Technol., 46 (2011) 23–29.

DOI: 10.1111/j.1365-2621.2010.02496.x

Google Scholar

[14] N. E. Durling et al., Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol–water mixtures,, Food Chem.,101(2007) 1417–1424.

DOI: 10.1016/j.foodchem.2006.03.050

Google Scholar

[15] E. M. Silva, H. Rogez, and Y. Larondelle, Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology,, Sep. Purif. Technol., 55 (2007) 381–387.

DOI: 10.1016/j.seppur.2007.01.008

Google Scholar

[16] Z. Y. Ju and L. R. Howard, Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin,, J. Agric. Food Chem., 51 (2003) 5207–5213.

DOI: 10.1021/jf0302106

Google Scholar

[17] J. Wang, B. Sun, Y. Cao, Y. Tian, and X. Li, Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran,, Food Chem., 106 (2008) 804–810.

DOI: 10.1016/j.foodchem.2007.06.062

Google Scholar

[18] M.-N. Maillard, M.-H. Soum, P. Boivin, and C. Berset, Antioxidant activity of barley and malt: relationship with phenolic content,, LWT-Food Sci. Technol., 29, (1996) 238–244.

DOI: 10.1006/fstl.1996.0035

Google Scholar

[19] L. S. Kassama, J. Shi, and G. S. Mittal, Optimization of supercritical fluid extraction of lycopene from tomato skin with central composite rotatable design model,, Sep. Purif. Technol., 60 (2008) 278–284.

DOI: 10.1016/j.seppur.2007.09.005

Google Scholar

[20] J. Xie, M. Xie, M. Shen, S. Nie, C. Li, and Y. Wang, Optimisation of microwave‐assisted extraction of polysaccharides from Cyclocarya paliurus (Batal.) Iljinskaja using response surface methodology,, J. Sci. Food Agric., 90 (2010) 1353–1360.

DOI: 10.1002/jsfa.3935

Google Scholar

[21] M. Naczk and F. Shahidi, Extraction and analysis of phenolics in food,, J. Chromatogr. A, 105 (2004) 95–111.

Google Scholar

[22] Y. Y. Thoo, S. K. Ho, J. Y. Liang, C. W. Ho, and C. P. Tan, Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (Morinda citrifolia),, Food Chem., 120 (2010) 290–295.

DOI: 10.1016/j.foodchem.2009.09.064

Google Scholar

[23] P.-J. Tsai, J. McIntosh, P. Pearce, B. Camden, and B. R. Jordan, Anthocyanin and antioxidant capacity in Roselle (Hibiscus sabdariffa L.) extract,, Food Res. Int 35 (2002) 351–356.

DOI: 10.1016/s0963-9969(01)00129-6

Google Scholar

[24] C. Liyana-Pathirana and F. Shahidi, Optimization of extraction of phenolic compounds from wheat using response surface methodology,, Food Chem., 93 (2005) 47–56.

DOI: 10.1016/j.foodchem.2004.08.050

Google Scholar

[25] J. Zhou et al., Optimization of ultrasonic-assisted extraction and radical-scavenging capacity of phenols and flavonoids from Clerodendrum cyrtophyllum Turcz leaves,, PLoS One, 8 (2013).

DOI: 10.1371/journal.pone.0068392

Google Scholar

[26] M. Vinatoru, An overview of the ultrasonically assisted extraction of bioactive principles from herbs,, Ultrason. Sonochem., 8 (2001) 303–313.

DOI: 10.1016/s1350-4177(01)00071-2

Google Scholar

[27] D. D. Gertenbach, Solid-liquid extraction technologies for manufacturing nutraceuticals,, Funct. foods Biochem. Process. Asp., 2 (2002) 331–366.

Google Scholar

[28] P. R. Gogate, Cavitational reactors for process intensification of chemical processing applications: A critical review,, Chem. Eng. Process.45 (2008) 515–527.

DOI: 10.1016/j.cep.2007.09.014

Google Scholar

[29] V. M. Kulkarni and V. K. Rathod, A novel method to augment extraction of mangiferin by application of microwave on three phase partitioning,, Biotechnol. Reports, 6 (2015).

DOI: 10.1016/j.btre.2014.12.009

Google Scholar