Response Surface Methodology Optimization for Extraction of Natural Anthocyanins from Vietnamese Carissa сarandas L. Fruit

Article Preview

Abstract:

Anthocyanins are naturally occurring compounds that are responsible for a wide variety of colors in many plants, fruits and vegetables. In this study, the extraction of natural anthocyanins from Vietnamese Carissa carandas L. beverage was optimized using response surface methodology (RSM). We applied a Box–Behnken design consisting of three levels and three factors. Examined factors are extraction temperature (ranging from 40 to 60°C), liquid to solid ratio (ranging from 2:1 to 4:1), extraction time (ranging from 30 to 60 min). Using 60% ethanol as solvent for the process, we determined the maximum yields of anthocyanin was 273.786 mg/L. This yield corresponds to extraction conditions of 3:1 (v/w) liquid to solid ratio, temperature of 48.10 °C with a 44.08 min extraction time. The experimental results also fit well with the proposed response model of anthocyanin yield (R2 = 0.9992). Therefore, this study suggested optimization of different extraction methods for the defatted fruit parts.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] P. R. Meghwal, S.K. Singh, A. Singh, R. Pathak, Characterization of Karonda (Carissa carandas) accessions under arid region, Journal of Applied Horticulture 2 (2014) 157-160.

DOI: 10.37855/jah.2014.v16i02.28

Google Scholar

[2] J. Sueprasarn, S. Reabroy, T. Pirak, Antioxidant properties of Karanda (Carissa carandas Linn.) extracts and its application in Thai traditional fermented pork sausage (Nham), Int. Food Res. J. 4 (2017) 1667-1675.

Google Scholar

[3] M. Arif, M. Kamal, T. Jawaid, M. Khalid, K.S. Saini, A. Kumar, M. Ahmad, Carissa carandas Linn. (Karonda): An exotic minor plant fruit with immense value in nutraceutical and pharmaceutical industries, AJBPS 58 (2016) 14-19.

Google Scholar

[4] Y. Sudjaroen, Lack of in vitro anticancer and antimicrobial activities from Karanda (Carissa carandas) fruit extracts., J. Pharm Negative Results 8 (2017) 31-36.

DOI: 10.4103/jpnr.jpnr_5_17

Google Scholar

[5] R. Sarkar, A. Kundu, K. Banerjee, S. Saha, Anthocyanin composition and potential bioactivity of karonda (Carissa carandas L.) fruit: An Indian source of biocolorant, LWT - J. Food Sci. Technol. 93 (2018) 673-678.

DOI: 10.1016/j.lwt.2018.04.012

Google Scholar

[6] S. Kumar, P. Gupta, and K.L.V. Gupta A Critical Review on Karamarda (Carissa carandas Linn.)., Int. J. Biol. Pharm. Allied. Sci. 4 (2013) 637-642.

Google Scholar

[7] W. Pewlong, S. Sajjabut, J. Eamsiri, S. Chookaew, Evaluation of Antioxidant activities, Anthocyanins, Total Phenolic Content, Vitamin C Content and Cytotoxicity of Carissa carandas Linn., CMUJ NS Special Issue on Food and Applied Bioscience 13 (2014) 509-517.

DOI: 10.12982/cmujns.2014.0053

Google Scholar

[8] A. Castañeda-Ovando, M.L. Pacheco-Hernández, M.E. Páez-Hernández, J.A. Rodríguez, C.A. Galán-Vidal, Chemical studies of anthocyanins: A review, Food Chem.s113 (2009) 859-871.

DOI: 10.1016/j.foodchem.2008.09.001

Google Scholar

[9] P. Ongkowijoyo, D.A. Luna-Vital, E. Gonzalez de Mejia, Extraction techniques and analysis of anthocyanins from food sources by mass spectrometry: An update, Food Chem. 250 (2018) 113-126.

DOI: 10.1016/j.foodchem.2018.01.055

Google Scholar

[10] L. Jaakola, New insights into the regulation of anthocyanin biosynthesis in fruits, Trends. Plant. Sci. 18 (2013) 477-483.

DOI: 10.1016/j.tplants.2013.06.003

Google Scholar

[11] J. Fang, Classification of fruits based on anthocyanin types and relevance to their health effects, Nutrition 31 (2015) 1301-1306.

DOI: 10.1016/j.nut.2015.04.015

Google Scholar

[12] V. Gowd, Z. Jia, W. Chen, Anthocyanins as promising molecules and dietary bioactive components against diabetes – A review of recent advances, Trends. Food Sci. Technol. 68 (2017) 1-13.

DOI: 10.1016/j.tifs.2017.07.015

Google Scholar

[13] A. Rafaela C. Braga, D.C. Murador, L.M.S. Mesquita, V.V. Rosso, Bioavailability of anthocyanins: Gaps in knowledge, challenges and future research, J. Food Compos. Anal. 68 (2018) 31-40.

DOI: 10.1016/j.jfca.2017.07.031

Google Scholar

[14] C.A. Morais, V.V. Rosso, D. Estadella, L. Pellegrini Pisani, Anthocyanins as inflammatory modulators and the role of the gut microbiota, J. Nutr. Biochem. 33 (2016) 1-7.

DOI: 10.1016/j.jnutbio.2015.11.008

Google Scholar

[15] J.M. Kong, L.S. Chia, N.K. Goh, T.F. Chia, R. Brouillard, Analysis and biological activities of anthocyanins, Phytochemistry 64 (2003) 923-933.

DOI: 10.1016/s0031-9422(03)00438-2

Google Scholar

[16] K. Mahdavee Khazaei1 & S. M. Jafari1,2,4 & M. Ghorbani1 & A. Hemmati Kakhki3 & M. Sarfarazi, Optimization of Anthocyanin Extraction from Saffron Petals with Response Surface Methodology, Food Anal. Methods 9 (2016) 1993–(2001).

DOI: 10.1007/s12161-015-0375-4

Google Scholar

[17] B. Guldiken, D. Boyacioglu, E. Capanoglu, Optimization of Extraction of Bioactive Compounds from BlackCarrot Using Response Surface Methodology (RSM), Food Anal. Methods 9 (2016) 1876–1886.

DOI: 10.1007/s12161-015-0370-9

Google Scholar

[18] G.L. Liu, H.H. Guo, Y.M. Sun, Optimization of the Extraction of Anthocyanins from the Fruit Skin of Rhodomyrtus tomentosa (Ait.) Hassk and Identification of Anthocyanins in the Extract Using High-Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS), Int. J. Mol. Sci. 13 (2012), 6292-6302.

DOI: 10.3390/ijms13056292

Google Scholar

[19] T.B. Zou, M. Wang, R.Y. Gan, W.H. Ling, Optimization of Ultrasound-Assisted Extraction of Anthocyanins from Mulberry, Using Response Surface Methodology, Int. J. Mol. Sci. 12 (2011), 3006-3017.

DOI: 10.3390/ijms12053006

Google Scholar

[20] G. Fan, Y. Han, Z. Gu, D. Chen, Optimizing conditions for anthocyanins extraction from purple sweet potato using response surface methodology (RSM), LWT - Food Science and Technology 41 (2008) 155–160.

DOI: 10.1016/j.lwt.2007.01.019

Google Scholar

[21] H. Guo, W. Ling, Q. Wang, C. Liu, Y. Hu, M. Xia, X. Feng, X. Xia, Effect of anthocyanin-rich extract from black rice (Oryza sativa L. indica) on hyperlipidemia and insulin resistance in fructose-fed rats. Plant Foods Hum. Nutr. 62 (2007), 1–6.

DOI: 10.1007/s11130-006-0031-7

Google Scholar

[22] J. Lee, R.W. Durst, R.E. Wrolstad, Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 88 (2005) 1269–1278.

DOI: 10.1093/jaoac/88.5.1269

Google Scholar

[23] Z. Yang, W. Zhai, Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC-MS. Innov. Food Sci. Emerg. 11( 2010) 470–476.

DOI: 10.1016/j.ifset.2010.03.003

Google Scholar

[24] H.L. Man, S. Behera, H. Park, Optimization of operational parameters for ethanol production from Korean food waste leachate. Int. J. Environ. Sci. Technol. 7 (2010) 157–164.

DOI: 10.1007/bf03326127

Google Scholar

[25] B. Chauhan, R. Gupta, Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process. Biochem. 39 (2004) 2115–2122.

DOI: 10.1016/j.procbio.2003.11.002

Google Scholar