Rapid Hydrothermal Growth of ZnO Nanorods on a Magnetron Sputtered Thick ZnO Seed Layer

Article Preview

Abstract:

In this work, we report rapid hydrothermal growth of ZnO nanorods on a magnetron sputtered thick ZnO seed layer. The ZnO seed layer on the glass substrarte is monocrystalline and formed by 600 °C annealing for 1 hour after magnetic sputtering. The morphology of the ZnO grain in the ZnO seed layer plays a critical role in the growing of the ZnO nanorods, and the slant ZnO grain results in the slant ZnO nanorod and connected ZnO nonrods. It is found that the average growth of the ZnO nanorods is ~75 nm/minute. The rapid grow rate may be owing to the monocrystallie and the pure water solution of the growth solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.H. Alsultany, Z. Hassan, N.M. Ahmed, Opt. Mater. 60 (2016) 30-37.

Google Scholar

[2] M. Ghosh, S. Ghosh, M. Seibt, K.Y. Rao, P. Peretzki, G. Mohan Rao, CrystEngComm 18 (2016) 622-630.

DOI: 10.1039/c5ce02262b

Google Scholar

[3] N. Kumar, A. Dubey, B. Bahrami, S. Venkatesan, Q. Qiao, M. Kumar, Appl. Surf. Sci. 436 (2018) 477-485.

Google Scholar

[4] S. Chen, X. Pan, H. He, W. Chen, C. Chen, W. Dai, H. Zhang, P. Ding, J. Huang, B. Lu, Z. Ye, Opt. Lett. 40 (2015) 649.

Google Scholar

[5] T.V.K. Karthik, L. Martinez, V. Agarwal, J. Alloy. Comp. 731 (2018) 853-863.

Google Scholar

[6] B. Chouchene, T.B. Chaabane, K. Mozet, E. Girot, S. Corbel, L. Balan, G. Medjahdi, R. Schneider, Appl. Surf. Sci. 409 (2017) 102-110.

DOI: 10.1016/j.apsusc.2017.03.018

Google Scholar

[7] G. Fiaschi, S. Mirabella, G. Franzò, L. Maiolo, A. Chitu, Y. Komem, Y. Shacham-Diamand, Appl. Surf. Sci. 458 (2018) 800-804.

DOI: 10.1016/j.apsusc.2018.07.092

Google Scholar

[8] Z. Ke, Z. Yang, M. Wang, M. Cao, Z. Sun, J. Shao, Sensor. Actuat. A-Phys. 253 (2017) 173-180.

Google Scholar

[9] H.-H. Park, X. Zhang, K.W. Lee, A. Sohn, D.-W. Kim, J. Kim, J.-W. Song, Y.S. Choi, H.K. Lee, S.H. Jung, I.-G. Lee, Y.D. Cho, H.-B. Shin, H.K. Sung, K.H. Park, H.K. Kang, W.-K. Park, Hyung-Ho Park, Nanoscale 7 (2015) 20717-20724.

DOI: 10.1039/c5nr05877e

Google Scholar

[10] T. Jiang, T. Xie, L. Chen, Z. Fu, D. Wang, Nanoscale 5 (2013) 2938-2944.

Google Scholar

[11] W. Hu, Y. Liu, T. Chen, Y. Liu, C.M. Li, Adv. Mater. 27 (2015) 181-185.

Google Scholar

[12] M.J. Jin, J. Jo, J.H. Kim, K.S. An, M.S. Jeong, J. Kim, J.W. Yoo, ACS appl. Mater. Inter. 6 (2014) 11649-11656.

Google Scholar

[13] K. Pan, Y. Dong, W. Zhou, Q. Pan, Y. Xie, T. Xie, G. Tian, G. Wang, ACS appl. Mater. Inter. 5 (2013) 8314-8320.

Google Scholar

[14] G. Zhang, S. Hou, H. Zhang, W. Zeng, F. Yan, C.C. Li, H. Duan, Adv. Mater. 27 (2015) 2400-2405.

Google Scholar

[15] H. So, J. Lim, A.J. Suria, D.G. Senesky, Appl. Surf. Sci. 409 (2017) 91-96.

Google Scholar

[16] G. Wang, Z. Li, M. Li, Y. Feng, W. Li, S. Lv, J. Liao, Ceram. Int. 44 (2018) 1291-1295.

Google Scholar

[17] G. She, X. Zhang, W. Shi, X. Fan, J. Chang, Electrochem. Commun. 9 (2007) 2784-2788.

Google Scholar

[18] R. Zhang, P.-G. Yin, N. Wang, L. Guo, Solid State Sci. 11 (2009) 865-869.

Google Scholar

[19] K. Park, J. Xi, Q. Zhang, G. Cao, J. Phys. Chem. C 115 (2011) 20992-20999.

Google Scholar

[20] Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Nanoscale 5 (2013) 8326.

Google Scholar

[21] D.B. Zhang, S.J. Wang, K. Cheng, S.X. Dai, B.B. Hu, X. Han, Q. Shi, Z.L. Du, ACS appl. Mater. Inter. 4 (2012) 2969-2977.

Google Scholar