Thermodynamic Optimization and Calculation of the LaCl3-CaCl2 System

Article Preview

Abstract:

A thermodynamic evaluation of the binary LaCl3-CaCl2 system was carried out by using CALPHAD method. The Modified Quasihelical Model was defined in order to describe the Gibbs energies of the liquid phases, and the model parameters were optimized from the experimental thermodynamic and phase diagram data. The phase diagram and the enthalpy of mixing of LaCl3-CaCl2 liquid were calculated. For LaCl3-CaCl2, a calculated eutectic point was observed at 924.82 K, 34.8 mol. % LaCl3. The calculated enthalpy of mixing is exothermic, the minimum was found at approximately 30 mol. % LaCl3. The thermodynamic properties and the phase diagram calculated from the optimized parameters agree well with the experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-20

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Wang, X. Hu, T. Huang, C. Tian, Thermodynamic optimization and calculation of the LaCl3–-MgCl2 system, Asian J. Chem., 26 (2014) 1655-1657.

DOI: 10.14233/ajchem.2014.17315

Google Scholar

[2] Y. Wang, Y. Sun, Thermodynamic assessment of EuCl3–MgCl2 and EuCl3–BaCl2 systems, Int. J. Thermophys., 32 (2011) 1942-1949.

DOI: 10.1007/s10765-011-1014-y

Google Scholar

[3] Y. Wang, Y. Sun, Thermodynamic assessment of PrCl3 - CaCl2 and NdCl3 - CaCl2 systems, J. Phase Equilib. Diff., 31 (2010) 421-424.

DOI: 10.1007/s11669-010-9780-y

Google Scholar

[4] Y. Wang, G. Shao, S. Li, Y. Sun, Z. Qiao, Phase equilibria calculation of LaI3-MI (M=Na, K, Cs) binary systems, J. Rare Earths, 27 (2009) 300-303.

DOI: 10.1016/s1002-0721(08)60237-9

Google Scholar

[5] Y. Wang, Y. Sun, Z. Qiao, X. Ye, Z. Ma, X. Meng, Thermodynamic optimization and calculation of the SmCl3–MCl (M = Na, K, Rb, Cs) phase diagrams, CALPHAD, 29 (2005) 317-322.

DOI: 10.1016/j.calphad.2005.05.004

Google Scholar

[6] I. S. Morozov, Z. N. Shevtsova, L. V. Klyukina, Izuchenie diagrammy sostoyaniya sistemy NdCl3-CaCl2-NaCl, Zhur. Nrorg. Khim., 2 (1957) 1640-1645.

Google Scholar

[7] E. Enninga, G. Alberts, R. Blachnik, Thermochemistry of mixtures of lanthanoid chlorides with chlorides of some divalent cations, Thermochimica Acta, 64 (1983) 317-325.

DOI: 10.1016/0040-6031(83)85007-2

Google Scholar

[8] K. Igarashi, H. Ohtani, J. Mochinaga, Phase diagram of the system LaCl3-CaCl2-NaCl, Z. Naturforsch., 42a (1987) 1421-1424.

Google Scholar

[9] A. T. Dinsdale, SGTE data for pure elements, CALPHAD, 15 (1991) 317-425.

DOI: 10.1016/0364-5916(91)90030-n

Google Scholar

[10] A. D. Pelton and M. Blander, Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach application to silicate slage, Metall. Trans., 17B (1986) 805-815.

DOI: 10.1007/bf02657144

Google Scholar

[11] A. D. Pelton, P. Chartrand, The modified quasi-chemical model: Part II. Multicomponent solutions, Metall. Mater. Trans. A, 32 (2001) 1355-1360.

DOI: 10.1007/s11661-001-0226-3

Google Scholar

[12] P. Chartrand, A. D. Pelton, The modified quasi-chemical model: Part III. Two sublattices, Metall. Mater. Trans. A, 32 (2001) 1397-1407.

DOI: 10.1007/s11661-001-0229-0

Google Scholar

[13] A. D. Pelton, A general geometric, thermodynamic model for multicomponent solutions, CALPHAD, 25 (2001) 319-328.

DOI: 10.1016/s0364-5916(01)00052-9

Google Scholar

[14] M. Gaune-Escard, L. Rycerz, W. Szezepaniak, A. Bognacz, Enthalpies of mixing in PrCl3-CaCl2 and NdCl3-CaCl2 liquid systems, Thermochimica Acta, 236 (1994) 51-58.

DOI: 10.1016/0040-6031(94)80254-8

Google Scholar

[15] R. Blachnik, G. Alberts, E. Enninga, Zur Kenntnis der Zustands diagramme SECl3/MCl2 (SE = La, Sm, Gd, Yb; M = Sr, Ba), Z. Anorg. Allg. Chem., 522 (1985) 207-216.

DOI: 10.1002/zaac.19855220325

Google Scholar

[16] K. C. Hong, O. J. Kleppa, Thermochemistry of the liquid mixtures of aluminum fluoride with alkali fluorides and with zinc fluoride, J. Phys. Chem., 82 (1978) 176-182.

DOI: 10.1021/j100491a010

Google Scholar