High Temperature Plastic Deformation Behavior of As-Cast 300M Steel Based on Friction Correction

Article Preview

Abstract:

Hot deformation behavior of as-cast 300M steel was investigated in the temperature range of 850-1200°C and strain rate range of 0.01-10 s-1 using Gleeble-3800 thermo-mechanical simulator. Based on the true stress-strain curves corrected for friction, flow stress behavior and deformation mechanism were analyzed, and the constitutive model of as-cast 300M steel was established based on the Arrhenius model and Zener-Hollomon parameter (Z). The microstructure after deformation was observed by Olympus GX51 microscope. The experimental results show that the flow stress of as-cast 300M steel decrease with the increase of deformation temperature and the decline of strain rate. The dynamic recrystallization is more likely to occur at higher temperatures and lower strain rates. By regression analysis, the hot deformation activation energy (Q) of the as-cast 300M steel was calculated to be 360.332 kJ/mol. Microstructure evolution is greatly affected by deformation temperature and strain rate. The dynamic recrystallized grain size increases with the enhancement of deformation temperature and the decrease of strain rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-106

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Malakondaiah, M. Srinivas and P. Rama Rao: Prog. Mater. Sci. 42 (1997) 209-242.

Google Scholar

[2] R. S. Qi, B. F. Guo, X. G. Liu and M. Jin: J. Iron Steel Res. Int. 21 (2014) 1116-1123.

Google Scholar

[3] J. Luo, M.Q. Li, Y.G. Liu and H.M. Sun: Mater. Sci. Eng. A. 534 (2012) 314-322.

Google Scholar

[4] X. T. Zhang, L. Huang, J. J. Li, X. Y. Zhang, R. Zeng and P. C. Li: J. Cent. South Univ. 48 (2017) 33-41.

Google Scholar

[5] Y. G. Liu, M. Q. Li and J. Luo: Mater. Sci. Eng. A. 574 (2013) 1-8.

Google Scholar

[6] K. Hase and N. Tsuji: Scr. Mater. 65 (2011) 404-407.

Google Scholar

[7] F. Pilehva, A. Zarei-Hanzaki and S. M. Fatemi-Varzaneh: Mater. Des. 42 (2012) 411-417.

DOI: 10.1016/j.matdes.2012.06.012

Google Scholar

[8] W.Yuan and R. S. Mishra: Mater. Sci. Eng. A. 558 (2012) 716-724.

Google Scholar

[9] Ebrahimi R, Najafizadeh A. J Mater Process Technol, 152 (2004) 136-143.

Google Scholar

[10] A. Laasraoui and J. J. Jonas: Metall. Mater. Trans. A. 22 (1991) 1545-1558.

Google Scholar

[11] Y.C. Lin, M. S. Chen and J. Zhong: Mech. Res. Commun. 35 (2008) 142-150.

Google Scholar

[12] H. Mirzadeh, J.M. Cabrera, J.M. Prado and A.Najafizadeh: Mater. Sci. Eng. A. 528 (2011) 3876-3882.

Google Scholar

[13] Y.V.R.K. Prasad and T. Seshacharyulu: Int. Mater. Rev. 243 (1998) 82-88.

Google Scholar

[14] G. Z. Quan, G. S. Li, T. Chen, Y. Xi. Wang, Y. W. Zhang and J. Zhou: Mater. Sci. Eng. A. 528 (2011) 4643-4651.

Google Scholar

[15] C. M. Sellars and W. J: Mctegart: Acta Metall. 14 (1966) 1136-1138.

Google Scholar

[16] C. Zener and J. H. Hollomon: J. Appl. Phys. 15 (1944) 22-32.

Google Scholar