[1]
Shukushima S. Modification of radiation cross-linked polypropylene. 2001. Vol. 60. P. 489–493.
Google Scholar
[2]
Radwan R.M. Electron induced modifications in the optical properties of polypropylene // J. Phys. D. Appl. Phys. 2007. Vol. 40, № 2. P. 374–379.
DOI: 10.1088/0022-3727/40/2/014
Google Scholar
[3]
Vahdat A. Radiation grafting of styrene onto polypropylene fibres by a 10 MeV electron beam. 2007. Vol. 76. P. 787–793.
DOI: 10.1016/j.radphyschem.2006.05.009
Google Scholar
[4]
Yang J.M. Wettability and Antibacterial Assessment of Chitosan Containing Radiation-Induced Graft Nonwoven Fabric of Polypropylene- g -Acrylic Acid. (2003).
DOI: 10.1002/app.12787
Google Scholar
[5]
Perova M.S. Influence of the Molecular Weight of Oligoisobutylenes on the Properties of Uncured Sealants // Int. Polym. Sci. Technol. 2011. Vol. 38, № 12. P. 9–11.
DOI: 10.1177/0307174x1103801203
Google Scholar
[6]
Veselovsky R.A., Leshchenko S.S. K.V.L. On some features of the radiation chemistry of polypropylene in the field of low doses // M.: Nauka. 1966. 268-271 p.
Google Scholar
[7]
Mamedov Sh.G.. Radiation physics and chemistry of polymers / ed. Deutschland S.A.P. 2015. 547 p.
Google Scholar
[8]
Snetivy D., Vancso G.J. A nanoscopic view at the spherulitic morphology of isotactic polypropylene by atomic force microscopy. 1993. Vol. 574. P. 567–574.
DOI: 10.1007/bf00296476
Google Scholar
[9]
Konovalova O.A. et al. Biocompatibility investigation of polypropylene endoprosthesis using atomic force microscopy // World Appl. Sci. J. 2013. Vol. 21, № 7. P. 1089–1095.
Google Scholar
[10]
Abiona A.A., Osinkolu A.G. Gamma-irradiation induced property modification of polypropylene. 2010. Vol. 5, № 7. P. 960–967.
Google Scholar