[1]
F. Ceroni, P. Salzano, Design provisions for FRCM system bonded to concrete and masonry elements, Composites Part B: Engineering (2018), 15, 230-242.
DOI: 10.1016/j.compositesb.2018.01.033
Google Scholar
[2]
L. Ombres, S. Verre, Shear Performance of FRCM Strengthened RC Beams. ACI Special Publication SP-324 (2018) 7.1-7.22.
Google Scholar
[3]
A. Cascardi, F. Micelli, M.A. Aiello, Analytical model based on artificial neural network for masonry shear walls strengthened with FRM systems, Compos Part B-Eng (2016) 95, 252-263.
DOI: 10.1016/j.compositesb.2016.03.066
Google Scholar
[4]
A. Cascardi, F. Micelli, M.A. Aiello, FRCM-confined masonry columns: experimental investigation on the effect of the inorganic matrix properties, Constr Build Mater (2018) 186 811-825.
DOI: 10.1016/j.conbuildmat.2018.08.020
Google Scholar
[5]
L. Ombres, N. Mancuso, S. Mazzuca, S. Verre. Bond between Carbon Fabric-Reinforced Cementitious Matrix and Masonry Substrate, J Mater Civil Eng 31(1) (2019).
DOI: 10.1061/(asce)mt.1943-5533.0002561
Google Scholar
[6]
A. Iorfida, S. Verre, S. Candamano, L. Ombres, Tensile and Direct Shear Responses of Basalt-Fibre Reinforced Mortar Based Materials, RILEM Bookseries 15 (2018) 544-552.
DOI: 10.1007/978-94-024-1194-2_63
Google Scholar
[7]
T. D'Antino, C.C. Papanicolaou, Comparison between different tensile test set-ups for the mechanical characterization of inorganic-matrix composites. Construction and Building Materials (2018) 171 140-151.
DOI: 10.1016/j.conbuildmat.2018.03.041
Google Scholar
[8]
P.D. Askouni, C.G. Papanicolaou, Experimental investigation of the bond between glass textile reinforced mortar overlays and masonry:the effect of the bond length, Mater Struct (2017) 50.2:164.
DOI: 10.1617/s11527-017-1033-7
Google Scholar
[9]
M. F. Funari, F. Greco, P. Lonetti, R. Luciano, R. Penna, An interface approach based on moving mesh and cohesive modeling in Z-pinned composite laminates. Compos Part B-Eng (2017).
DOI: 10.1016/j.compositesb.2017.10.018
Google Scholar
[10]
M.F. Funari, F. Greco, P. Lonetti, Sandwich panels under interfacial debonding mechanisms, Compos Struct (2018), 203, 310-320.
DOI: 10.1016/j.compstruct.2018.06.113
Google Scholar
[11]
ABAQUS Finite Element Code. 2014. Hibbitt, Karlsson & Sorensen, Imc, RI.
Google Scholar
[12]
UNI EN 772-1:2002. Methods of test for masonry unit- Determination of compressive strength.
Google Scholar
[13]
Kerakoll S.p.A. – web site: <www.kerakoll.com> [accessed Feb 2019].
Google Scholar
[14]
UNI EN 1015-11:2007. Methods of test for masonry units – Part 11: of flexural and compressive strength of hardened mortar.
Google Scholar
[15]
UNI EN 12190:2000. Product and system for the protection and repair concrete structures – Test methods – Determination of compressive strength of repair mortar.
DOI: 10.3403/01552488u
Google Scholar
[16]
C. Carloni, T. D'Antino, L.H. Sneed, C. Pellegrino, Three-Dimensional Numerical Modeling of Single-Lap Direct Shear Tests of FRCM-Concrete Joints Using a Cohesive Damaged Contact Approach. J Compos Constr, 21(2) (2018).
DOI: 10.1061/(asce)cc.1943-5614.0000827
Google Scholar
[17]
F.J. Vecchio, M.P. Collins, The modified compression-field theory for reinforced concrete elements subjected to shear, ACI Structural Journal (1986) 219-231.
DOI: 10.14359/10416
Google Scholar
[18]
X.Z. Lu, J.G. Teng, L.P. Ye, J.J. Jiang, Bond slip models for FRP sheet/plates bonded to concrete. Eng Struct 27 (2005) 920-937.
DOI: 10.1016/j.engstruct.2005.01.014
Google Scholar