Nano-Scale Copper Oxide: Preparation, Characterization and its Effect on the Thermal Behavior of Ammonium Perchlorate

Article Preview

Abstract:

A new generation of high energy materials depends on the use of Nano-particle oxides. Nano-scale copper oxide (nano-CuO) has large surface area and surface energy which is suitable for its application in the field of energetic materials. This manuscript reports a method for the synthesis of nano-CuO by a liquid-state reaction method. The prepared nano-CuO was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to check the particles size, purity and morphology of the crystals. The effect of Nano-CuO on the thermal behavior of AP was tested by differential scanning calorimeter (DSC). The results proved that the average particle sizes of the nano-cuo particles are in the range of 10-20 nm. The thermal degradation rate of AP was increased by 23% in the presence of 1% nano-CuO and the heat release was increased by 51%. It was concluded that nano-CuO could have obvious effect on the burning behavior, performance and combustion characteristics of the solid rocket propellants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-138

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sahooli, S. Sabbaghi, R. Saboori, Synthesis and characterization of mono sized CuO nanoparticles, Mater. Lett. 81 (2012) 169-172.

DOI: 10.1016/j.matlet.2012.04.148

Google Scholar

[2] K. S. Khashan, G. M. Sulaiman, F. A. Abdulameer, Synthesis and Antibacterial Activity of CuO Nanoparticles Suspension Induced by Laser Ablation in Liquid, Arab. J. Sci. Eng. 41(1) (2016) 301-310.

DOI: 10.1007/s13369-015-1733-7

Google Scholar

[3] D. K. Pritchard, Literature review, Health and Safety Laboratory, (2004).

Google Scholar

[4] T. Berger, J. Schuh, M. Sterrer, O. Diwald, E. Knözinger, Lithium ion induced surface reactivity changes on MgO nanoparticles, J. Catal. 247(1) (2007) 61-67.

DOI: 10.1016/j.jcat.2007.01.008

Google Scholar

[5] R. Katwal, H. Kaur, G. Sharma, M. Naushad, D. Pathania, Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity, J. Ind. Eng. Chem. 31 (2015) 173-184.

DOI: 10.1016/j.jiec.2015.06.021

Google Scholar

[6] S. M. Tawfik, A. Saleh, A. Elbeih, T. M. Klapötke, Reactive nanocomposites as versatile additives for composite propellants, Zeitschrift fur Anorganische und Allgemeine Chemie. 642(21) (2016) 1222-1229.

DOI: 10.1002/zaac.201600285

Google Scholar

[7] A. Tiwari, Y. K. Mishra, H. Kobayashi, A. P. Turner, Intelligent nanomaterials, John Wiley & Sons, (2016).

Google Scholar

[8] P. W. M. Jacobs, H. Whitehead, Decomposition and combustion of ammonium perchlorate, Chem. Rev. 69(4) (1969) 551-590.

DOI: 10.1021/cr60260a005

Google Scholar

[9] I. Boshra, A. Elbeih, H. E. Mostafa, Improving the mechanical properties of glycidyl azide polymeric matrix used in composite solid rocket propellant by adding advanced cross-linker, Zeitschrift fur Anorganische und Allgemeine Chemie.

DOI: 10.1002/zaac.201900003

Google Scholar

[10] M. Abd-Elghany, A. Elbeih, S. Hassanein, Thermal behavior and decomposition kinetics of RDX and RDX/HTPB composition using various techniques and methods, Cent. Eur. J. Energetic Mater. 13(3) (2016) 714-735.

DOI: 10.22211/cejem/64954

Google Scholar

[11] Z. Ma, F. Li, H. Bai, Effect of Fe2O3 in Fe2O3/AP composite particles on thermal decomposition of AP and on burning rate of the composite propellant, Propellants, Explosives, Pyrotechnics, 31(6) (2006) 447-451.

DOI: 10.1002/prep.200600060

Google Scholar

[12] L. Li, X. Sun, X. Qiu, J. Xu, G. Li, Inorganic chemistry. 47(19) (2008) 8839-8846.

Google Scholar

[13] R. Damse, A. Sikder, Role of inorganic additives on the ballistic performance of gun propellant formulations, J. hazard. mater. 154(1-3) (2008) 888-892.

DOI: 10.1016/j.jhazmat.2007.10.103

Google Scholar

[14] G. Duan, X. Yang, J. Chen, G. Huang, L. Lu, and X. Wang, The catalytic effect of nanosized MgO on the decomposition of ammonium perchlorate, Powder technol. 172(1) (2007) 27-29.

DOI: 10.1016/j.powtec.2006.10.038

Google Scholar

[15] S. Zeman, S. Q.-L. Yan, A. Elbeih, Recent advances in the study of the initiation of energetic materials using the characteristics of their thermal decomposition Part II. Using Simple Differential Thermal Analysis, Cent. Eur. J. Energetic Mater. 11(3) (2014) 395-404.

DOI: 10.1016/b978-0-444-64062-8.00006-1

Google Scholar

[16] A. Elbeih, M. Abd-Elghany, T. Elshenawy, Application of vacuum stability test to determine thermal decomposition kinetics of nitramines bonded by polyurethane matrix, Acta Astronaut. 132 (2017) 124-130.

DOI: 10.1016/j.actaastro.2016.12.024

Google Scholar

[17] J. Zhu et al. Nanoscale, 2(6) (2010) 988-994.

Google Scholar

[18] A. Eslami, S. G. Hosseini, M. Bazrgary, Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents, J. therm. anal. calorim. 113(2) (2013) 721-730.

DOI: 10.1007/s10973-012-2784-6

Google Scholar

[19] S. Jain, P. Nambiar, Effect of tetramethylammonium perchlorate on ammonium perchlorate and propellant decomposition, Thermochim. Acta, 16(1) (1976) 49-54.

DOI: 10.1016/0040-6031(76)85041-1

Google Scholar

[20] M. Abd-Elghany, T. M. Klapötke, A. Elbeih, Environmentally safe (chlorine-free): new green propellant formulation based on 2,2,2-trinitroethyl-formate and HTPB, RSC Adv. 8(21) (2018) 11771-11777.

DOI: 10.1039/c8ra01515e

Google Scholar

[21] M. Abd-Elghany, A. Elbeih, T. M. Klapötke, Thermo-analytical study of 2,2,2-trinitroethyl-formate as a new oxidizer and its propellant based on a GAP matrix in comparison with ammonium dinitramide, J. Anal. Appl. Pyrolysis. 133 (2018) 30-38.

DOI: 10.1016/j.jaap.2018.05.004

Google Scholar

[22] S. R. Chakravarthy, E. W. Price, R. K. Sigman, Mechanism of Burning Rate Enhancement of Composite Solid Propellants by Ferric Oxide, Journal of propulsion and power, 13(4) (1997) 471-480.

DOI: 10.2514/2.5208

Google Scholar

[23] S. Chaturvedi, P. N. Dave, Nano-metal oxide: potential catalyst on thermal decomposition of ammonium perchlorate, J. Exp. Nanosci. 7(2) (2012) 205-231.

DOI: 10.1080/17458080.2010.517571

Google Scholar

[24] S. Chaturvedi, P. N. Dave, A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate, J. Saudi Chem. Soc. 17(2) (2013) 135-149.

DOI: 10.1016/j.jscs.2011.05.009

Google Scholar

[25] T. Tillotson, L. Hrubesh, R. Simpson, R. Lee, R. Swansiger, L. Simpson, Journal of non-crystalline solids. 225 (1998) 358-363.

DOI: 10.1016/s0022-3093(98)00055-6

Google Scholar

[26] M. Mahinroosta, Catalytic effect of commercial nano-CuO and nano-Fe2O3 on thermal decomposition of ammonium perchlorate, J. Nanostructure chem. 3(47) (2013) 1-6.

DOI: 10.1186/2193-8865-3-47

Google Scholar

[27] L. Li, Y. Zhou, Z. Li, Y. Ma, C. Pei, Materials Research Bulletin. 60 (2014) 802-807.

Google Scholar