Mechanical Properties of Water Hyacinth Fiber Reinforced Bio-Based Epoxy Composite

Article Preview

Abstract:

This research studied the influence of treated water hyacinth fibers with chemical substances and the orientation of water hyacinth (WH) fiber reinforced bio-based epoxy composite on mechanical properties. The specimens with direction at 90˚, 45˚ and 0˚ of WH fiber and different treatment substance were investigated. Sodium hydroxide (NaOH) and (3-Aminopropyl) triethoxysilane were used for the chemical treatment of fiber, which can improve the mechanical properties of the composite. The result shows that the tensile modulus of 1% silane treated WH fiber is higher than neat epoxy around 15%. The orientation of the fiber affects directly on the tensile strength. The addition of the WH fibers improves impact properties in all conditions compared to original epoxy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-11

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Pitarresi, D. Tumino, A. Mancuso, Thermo-Mechanical Behaviour of Flax-Fibre Reinforced Epoxy Laminates for Industrial Applications, Mater. 8(11) (2015) 7371-7388.

DOI: 10.3390/ma8115384

Google Scholar

[2] B. Barari, E. Omrani, A. Dorri Moghadam, P. L. Menezes, K. M. Pillai, P. K. Rohatgi, Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the Green, composite, Carbohydr. Polym. 147 (2016) 282-293.

DOI: 10.1016/j.carbpol.2016.03.097

Google Scholar

[3] S. Chonsakorn, S. Srivorradatpaisan, R. Mongkholrattanasit, Effects of different extraction methods on some properties of water hyacinth fiber, J. Nat. Fibers, (2018) 1-11.

DOI: 10.1080/15440478.2018.1448316

Google Scholar

[4] H. Abral et al., Mechanical properties of water hyacinth fibers – polyester composites before and after immersion in water, Mater. Des. 58 (2014) 125-129.

DOI: 10.1016/j.matdes.2014.01.043

Google Scholar

[5] C. M. Vu, D. D. Nguyen, L. H. Sinh, T. D. Pham, L. T. Pham, H. J. Choi, environmentally benign green composites based on epoxy resin/bacterial cellulose reinforced glass fiber: Fabrication and mechanical characteristics, Polym. Test. 61 (2017) 150-161.

DOI: 10.1016/j.polymertesting.2017.05.013

Google Scholar

[6] J.-W. Rhim, H.-M. Park, C.-S. Ha, Bio-nanocomposites for food packaging applications, Prog. Polym. Sci. 38(10-11) (2013) 1629-1652.

DOI: 10.1016/j.progpolymsci.2013.05.008

Google Scholar

[7] T. Padmavanthi, S. Venkata Naidu, R. Rao, Studies on Mechanical Behavior of Surface Modified Sisal Fibre – Epoxy Composites, J. Reinf. Plast. Compos. 31(8) (2012) 519-532.

DOI: 10.1177/0731684412438954

Google Scholar

[8] Z. Khan, B. F. Yousif, M. Islam, Fracture behaviour of bamboo fiber reinforced epoxy composites, Compos. Part B Eng. 116 (2017) 186-199.

DOI: 10.1016/j.compositesb.2017.02.015

Google Scholar

[9] N. Sgriccia, M. C. Hawley, M. Misra, Characterization of natural fiber surfaces and natural fiber composites, Compos. Part A Appl. Sci. Manuf. 39(10) (2008) 1632-1637.

DOI: 10.1016/j.compositesa.2008.07.007

Google Scholar

[10] N.F. Ramirez, Y.S. Hernandez, J.C. de Leon, S.R.V. Garcia, L.D. Lvova, L.G. Gonzalez, Composites from water hyacinth (Eichhornea crassipe) and polyester resin, Fibers Polym. 16(1) (2015) 196-200.

DOI: 10.1007/s12221-015-0196-5

Google Scholar

[11] M. Sharma, I. M. Rao, J. Bijwe, Influence of orientation of long fibers in carbon fiber–polyetherimide composites on mechanical and tribological properties, Wear, 267(5-8) (2009) 839-845.

DOI: 10.1016/j.wear.2009.01.015

Google Scholar