Effect of Sintering Temperature on Carbonated Hydroxyapatite Derived from Common Cockle Shells (Cerastodermaedule): Composition and Crystal Characteristics

Article Preview

Abstract:

Incorporation carbonate ion to hydroxyapatite (HAp) structure, known as carbonated hydroxyapatite (CHAp) is reported to reduce crystallinity, increase the solubility rate, and increase bioactivity. Sintered CHAp material is interesting because it may have a better biological response.CHAp derived from common cockle (Cerastoderma edule) shell have produced by precipitation method. This study aimed to investigate the effect of sintering temperature to compositon and crystal characteristics of CHAp. CHAp powder was sintered at 400, 600, and 800°C in air atmosphere.CHApas-preparedand sintered samples were analyzed using Energy Dispersive Spectrometry (EDS), Fourier Transform Infrared (FT-IR), and X-ray Diffractometer (XRD).EDS analysis showed that the Ca/P ratio of powder CHAp was around 1.67-1.94 (greater than the Ca/P ratioof HAp). For increasing of sintering temperature, carbonate and water content decreased, crystallinity and crystallite size increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-43

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Ezekiel, S. R. Kasim, Y.M.B. Ismail, A.F.M. Noor, Nanoemulsion synthesis of carbonated hydroxyapatite nanopowders: effect of variant CO32-/PO43-molar ratios on phase, morphology, and bioactivity, Ceram. Int.44(11) (2018) 13082-13089.

DOI: 10.1016/j.ceramint.2018.04.128

Google Scholar

[2] Y. Rizkayanti, Y. Yusuf, Effect of temperature on synthesis of hydroxyapatite from cockle shells (Anadara granosa), Int. J. Nanoelectro. Mater. 11 (2018) 43-50.

Google Scholar

[3] Y. Rizkayanti, Y. Yusuf, Optimization of the temperature synthesis of hydroxyapatite from Indonesian Crab shells, Int. J. Nanoelectro. Mater. 12(1) (2019) 85-92.

Google Scholar

[4] M. Sari, Y. Yusuf, Synthesis and characterization of hydroxyapatite based on green mussel shells (Perna viridis) with the variation of stirring time using the precipitation method, Int. J. Nanoelectro. Mater. 11(3) (2018) 357-370.

DOI: 10.1088/1757-899x/432/1/012046

Google Scholar

[5] C. C. Kee, H. Ismail, A.F.M. Noor, Effect of synthesis technique and carbonate content on the crystalinity and morphology of carbonated hydroxyapatite, J. Mater. Sci. Technol. 29(8) (2013) 761-764.

DOI: 10.1016/j.jmst.2013.05.016

Google Scholar

[6] Y. Doi, Sintered carbonate apatites as bone substitutes, Cells Mater. 7(2) (1993) 111-122.

Google Scholar

[7] J. P. Lafon, E. Champion, D. Bernache-Assollant, Processing of AB-type carbonated hydroxyapatite Ca10-x(PO4)6-x(CO3) x(OH)2-x-2y(CO3) y ceramics with controlled composition, J. Eur. Ceram. Soc. 28(1) (2008) 139-147.

DOI: 10.1016/j.jeurceramsoc.2007.06.009

Google Scholar

[8] M. Okada, T. Matsumoto, Synthesis and modification of apatite nanoparticles for use in dental and medical applications, Jpn. Dent. Sci. Rev. 51(4) (2015) 85-95.

DOI: 10.1016/j.jdsr.2015.03.004

Google Scholar

[9] R. Jayasree, K. Madhumathi, D. Rana, M. Ramalingam, R.P. Nankar, M. Doble, T.S.S. Kumar, Development of egg shell derived carbonated apatite nanocarrier system for drug delivery, J. Nanosci. Nanotechnol. 18(4) (2018) 2318-2324.

DOI: 10.1166/jnn.2018.14377

Google Scholar

[10] O.F. Kamenetskaya, A. Kol'tsov, M. Kuz'mina, M. Zorina, L. Poritskaya, Ion subtitutions and non-stoichiometry of carbonated apatite-(CaOH) synthesized by precipitated and hydrothermal method, J. Mol. Struct. 992(1-3) (2011) 9-18.

DOI: 10.1016/j.molstruc.2011.02.013

Google Scholar

[11] S. Cox, Synthesis method of hydroxyapatite, Ceram, University of Birmingham, (2014).

Google Scholar

[12] M. Fleet, Carbonated Hydroxyapatite: Materials, Synthesis and Application, PanStanforfd Publishing, United States, (2015).

Google Scholar

[13] Food and Agriculture Organization of the United Nations, Species fact sheets: Cerastoderma edule (Linnaeus, 1758), Fisheries and Aquaculture and Department, (2019).

Google Scholar

[14] T. Laonapakul, Synthesis of hydroxyapatite from biogenic waste, KKU Eng. J. 42(3) (2015) 269-275.

Google Scholar

[15] L.G. Ellies, G. A. Nelson, J.D.B. Featherrstone, crystallographic structure and surface morphology of sintered carbonated apatite, J. Biomed. Mater. Res. 22(6) (1988) 541-553.

DOI: 10.1002/jbm.820220609

Google Scholar

[16] T.I. Ivanova, O.V.F Kamenetskaya, A. B. Kol'tsov, V.L. Ugolkov, Crystal structure of calcium-deficient carbonated hydroxyapatite: Thermal decomposition, J. Solid State Chem. 160(2) (2001) 340-349.

DOI: 10.1006/jssc.2000.9238

Google Scholar

[17] Q. Liu, J.P. Matinlinna, Z. Chen, C. Ning, G. Ni, H. Pan, B.W. Darvell, Effect of thermal treatment on carbonated hyroxyapatite: morphology, composition, crystal characteristics and solubility, Ceram. Int. 41(5) (2015) 6149-6157.

DOI: 10.1016/j.ceramint.2014.11.062

Google Scholar

[18] A. Slosarczyk, Z. Paszkiewicz, A. Zima, The effect of phosphate source on the sintering of carbonate subtituted hydroxyapatite, Ceram. Int.36(2) (2010) 577-582.

DOI: 10.1016/j.ceramint.2009.09.032

Google Scholar

[19] M. F. Toney, XRD. Encyclopedia of Materials Characterization, (1992) 198–213.

Google Scholar

[20] D. Núñez, E. Elgueta, K. Varaprasad, P. Oyarzún, Hydroxyapatite nanocrystals synthesized from calcium rich bio-wastes, Mater.Lett. 230 (2018) 64-68.

DOI: 10.1016/j.matlet.2018.07.077

Google Scholar

[21] E. Landi, A. Tampieri, G. Celotti, L. Vichi, M. Sandri, Influence of synthesis and sintering parameters on the characteristics of carbonate apatite, Biomaterials, 25(10) (2004) 1763-1770.

DOI: 10.1016/j.biomaterials.2003.08.026

Google Scholar

[22] R. Z. LeGeros, R. Kukowska, C. Bautista, J.P. Le Geros, Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites, Connect Tissue Res. 33(1-3) (1995) 203-209.

DOI: 10.3109/03008209509017003

Google Scholar