Synthesis and Characterization of Membranes from Cellulose Acetate Derivatives of Corn Husk

Article Preview

Abstract:

In this study membranes synthesized using cellulose acetate through chemical crosslinking process with polyethylene glycol (PEG) and dimethylformamide (DMF) acts as crosslinker agent. Cellulose is derived from corn husk, which known as agricultural waste that has potential sources of cellulosic fibers in producing cellulose acetate. The prepared membranes of corn husk cellulose were characterized by Fourier transform infrared and X-ray diffraction. The effect of various additives and additives concentration were investigated to obtain swelling degree and tensile strength of membranes. Result showed that highest swelling degree of 236% was achieved in the condition of DMF/S 10% w/w. This condition produce cellulose acetate membrane with thickness of 0.074 mm, tensile strength of 27.5kg/cm2 and elongation of 3.5%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-61

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Goswami, A. M. Das, Synthesis and characterization of a biodegradable cellulose acetate montmorillonite composite for effective adsorption of eosin Y, Carbohydr. Polym. 206 (2019) 863-872.

DOI: 10.1016/j.carbpol.2018.11.040

Google Scholar

[2] J. Li, L. P. Zhang, F. Peng, J. Bian, T. Q. Yuan, F. Xu, Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst, Molecules. 14(9) (2009) 3551-3566.

DOI: 10.3390/molecules14093551

Google Scholar

[3] D. G. Yu, X. Y. Li, X. Wang, W. Chian, Y. Z. Liao, Y. Li, Zero-order drug release cellulose acetate nanofibers prepared using coaxial electrospinning, Cellulose, 20(1) (2013) 379-389.

DOI: 10.1007/s10570-012-9824-z

Google Scholar

[4] D. A. Cerqueira, G. R. Filho, C. S. Meireles, Optimization of sugarcane bagasse cellulose acetylation, Carbohydr. Polyme. 69(3) (2007) 579-582.

DOI: 10.1016/j.carbpol.2007.01.010

Google Scholar

[5] A. EL-Gendi, S. S. Ali, S. A. Ahmed, H. A. Talaat, Development of membrane blend using casting technique for water desalination, Membr. Water. Treat. 3(3) (2012) 201-209.

DOI: 10.12989/mwt.2012.3.3.201

Google Scholar

[6] J. A. L. Ramrez, M. D. Oviedo, J. M. Alonso, Comparative studies of reverse osmosis membranes for wastewater reclamation, Desalination, 191(1-3) (2006) 137-147.

DOI: 10.1016/j.desal.2005.08.013

Google Scholar

[7] S. Ehsan, M. Toraj, Cellulose acetate (CA)/polyvinylpyrrolidone (PVP) blend asymmetric membranes: preparation, morphology and performance, Desalination, 249(2) (2009) 850-854.

DOI: 10.1016/j.desal.2008.12.066

Google Scholar

[8] L. Yu, K. Deana, L. Lin, Polymer blends and composites from renewable resources, Prog. Polym. Sci. 31(6) (2006) 576-602.

Google Scholar

[9] A. V. R. Reddya, H. R. Patelb, Chemically treated polyethersulfone/polyacrylonitrileblend ultrafiltration membranes for better fouling resistance,Desalination, 221(1-3) (2008) 318-323.

DOI: 10.1016/j.desal.2007.01.089

Google Scholar

[10] S. M. Ibrahim, H. Nagasawa, M. Kanezashi, T. Tsuru, Robust organosilicamembranes for high temperature reverse osmosis (RO) application: membranepreparation,separation characteristics of solutes and membraneregeneration, J. Membr. Sci. 493 (2015) 515-523.

DOI: 10.1016/j.memsci.2015.06.060

Google Scholar

[11] Y. Zhao, C. Qiu, X. Li, A. Vararattanavech, W. Shen, J. Torres, C. H_elix-Nielsen, R. Wang, X. Hu, A. G. Fane, C. Y. Tang, Synthesis of robust andhigh-performance aquaporin-based biomimetic membranes by interfacialpolymerization-membranepreparation and RO performance characterization, J. Membr. Sci. 423-424 (2012) 422-428.

DOI: 10.1016/j.memsci.2012.08.039

Google Scholar

[12] F. A. Ugbe, V. A. Ikudayis, The kinetics of eosin yellow removal from aqueous solution using pineapple peels, Edorium J. Waste Manag. 2 (2017) 5-11.

DOI: 10.5348/w01-2017-6-oa-2

Google Scholar

[13] S. Chatterjee, S. Chatterjee, B. P. Chatterjee, A. R. Das, A. K. Guha, Adsorption of a model anionic dye, eosin Y, from aqueous solution by chitosan hydrobeads, J. Colloid Interface Sci. 288(1) (2005) 30-35.

DOI: 10.1016/j.jcis.2005.02.055

Google Scholar

[14] E. O. Oyelude, J. A. M. Awudza, S. K. Twumasi, Equilibrium, kinetic and thermodynamic study of removal of eosin yellow from aqueous solution using teak leaf litter powder, Sci. Rep. 7 (2017).

DOI: 10.1038/s41598-017-12424-1

Google Scholar

[15] T. Riaz, A. Ahmad, S. Saleemi, M. Adrees, F. Jamshed, A. M. Hai, T. Jamil, Synthesis and characterization of polyurethane-cellulose acetateblend membrane for chromium (VI) removal, Carbohyd. Polym. 153 (2016) 582-591.

DOI: 10.1016/j.carbpol.2016.08.011

Google Scholar

[16] Isroi, A. Cifriadi, T. Panji, N. A. Wibowo, K. Syamsu, Bioplastic production from cellulose of oil palm empty fruit bunch, IOP Conf. Series: Earth Envirom. Sci. 65(1) (2017).

DOI: 10.1088/1755-1315/65/1/012011

Google Scholar